Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Plants ; 10(9): 1317-1329, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39179701

RESUMO

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is crucial for profiling histone modifications and transcription factor binding throughout the genome. However, its application in economically important plant organs (EIPOs) such as seeds, fruits and flowers is challenging due to their sturdy cell walls and complex constituents. Here we present advanced ChIP (aChIP), an optimized method that efficiently isolates chromatin from plant tissues while simultaneously removing cell walls and cellular constituents. aChIP precisely profiles histone modifications in all 14 tested EIPOs and identifies transcription factor and chromatin-modifying enzyme binding sites. In addition, aChIP enhances ChIP efficiency, revealing numerous novel modified sites compared with previous methods in vegetative tissues. aChIP reveals the histone modification landscape for rapeseed dry seeds, highlighting the intricate roles of chromatin dynamics during seed dormancy and germination. Altogether, aChIP is a powerful, efficient and sensitive approach for comprehensive chromatin profiling in virtually all plant tissues, especially in EIPOs.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Sementes/genética , Cromatina/metabolismo , Cromatina/genética , Frutas/genética , Imunoprecipitação da Cromatina/métodos , Flores/genética , Código das Histonas
2.
Genome Biol ; 24(1): 181, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550699

RESUMO

BACKGROUND: Although spatial organization of compartments and topologically associating domains at large scale is relatively well studied, the spatial organization of regulatory elements at fine scale is poorly understood in plants. RESULTS: Here we perform high-resolution chromatin interaction analysis using paired-end tag sequencing approach. We map chromatin interactions tethered with RNA polymerase II and associated with heterochromatic, transcriptionally active, and Polycomb-repressive histone modifications in Arabidopsis. Analysis of the regulatory repertoire shows that distal active cis-regulatory elements are linked to their target genes through long-range chromatin interactions with increased expression of the target genes, while poised cis-regulatory elements are linked to their target genes through long-range chromatin interactions with depressed expression of the target genes. Furthermore, we demonstrate that transcription factor MYC2 is critical for chromatin spatial organization, and propose that MYC2 occupancy and MYC2-mediated chromatin interactions coordinately facilitate transcription within the framework of 3D chromatin architecture. Analysis of functionally related gene-defined chromatin connectivity networks reveals that genes implicated in flowering-time control are functionally compartmentalized into separate subdomains via their spatial activity in the leaf or shoot apical meristem, linking active mark- or Polycomb-repressive mark-associated chromatin conformation to coordinated gene expression. CONCLUSION: The results reveal that the regulation of gene transcription in Arabidopsis is not only by linear juxtaposition, but also by long-range chromatin interactions. Our study uncovers the fine scale genome organization of Arabidopsis and the potential roles of such organization in orchestrating transcription and development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Regulação da Expressão Gênica , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes , Proteínas do Grupo Polycomb/genética
3.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806247

RESUMO

As a desirable agricultural trait, multi-inflorescence (MI) fulfills the requirement of mechanized harvesting and yield increase in rapeseed (Brassica napus L.). However, the genetic mechanism underlying the multi-inflorescence trait remain poorly understood. We previously identified a difference of one pair of dominant genes between the two mapping parental materials. In this study, phenotype and expression analysis indicated that the imbalance of the CLAVATA (CLV)-WUSCHEL (WUS) feedback loop may contribute to the abnormal development of the shoot apical meristem (SAM). BnaMI was fine-mapped to a 55 kb genomic region combining with genotype and phenotype of 5768 BCF1 individuals using a traditional mapping approach. Through comparative and expression analyses, combined with the annotation in Arabidopsis, five genes in this interval were identified as candidate genes. The present findings may provide assistance in functional analysis of the mechanism associated with multi-inflorescence and yield increase in rapeseed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , Proteínas de Arabidopsis/genética , Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA