Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 973: 82-90, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28502431

RESUMO

Nucleoside diphosphatase kinase A (NDPK-A) is a metastasis-suppressor protein and a biomarker that act on a wide range cancer cells to inhibit the potential metastasis. Herein, we present a simple photoelectrochemical immunosensor based on ZnO nanorod arrays for the sensitive detection of NDPK-A. The ZnO nanorod arrays cosensitized with CdS nanoparticles and Mn2+ displayed a high and stable photocurrent response under irradiation. After anti-NPDK-A nanobodies were immobilized to the ZnO nanorod arrays, the proposed immunosensor can be utilized for detecting NPDK-A by monitoring the changes in the photocurrent signals of the electrode resulting from immunoreaction. Accordingly, the well-designed immunosensor exhibited a low limit of detection (LOD) of 0.3 pg mL-1 and a wide linear range from 0.5 pg mL-1 to 10 µg mL-1. The R2 of the regression curve is 0.99782. Meanwhile, the good stability, reproducibility and specificity of the resulting photoelectrochemical biosensor are demonstrated. In addition, the presented work would offer a novel and simple approach for the detection of immunoreactions and provide new insights in popularizing the diagnosis of NPDK-A.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nucleosídeo NM23 Difosfato Quinases/análise , Nanotubos , Óxido de Zinco , Humanos , Imunoensaio , Nucleosídeo NM23 Difosfato Quinases/sangue , Reprodutibilidade dos Testes
2.
Biosens Bioelectron ; 90: 321-328, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940234

RESUMO

We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials.


Assuntos
Biomarcadores/química , Técnicas Biossensoriais , Plantas Geneticamente Modificadas , Grafite/química , Ferro/química , Nanocompostos/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA