RESUMO
2D materials have emerged as potential building blocks for electrochemical metallization (ECM) memristors with excellent performance. The evolution dynamics of conductive filaments (CFs) directly determine the resistance switching performance of the 2D material-based ECM memristors. However, achieving controllable CFs under the operation conditions remains challenging. Here, in situ transmission electron microscopy was employed to investigate the formation and evolution of CFs in Au/MoS2/Ag planar ECM memristors under electric fields, and various growth modes of CFs dependent on electric field strength were revealed. As the electric field intensity increased, the CFs exhibited diverse morphological variations, transitioning from a nanocluster-type to a continuous solid-type. Especially, the nanocluster-induced CF growth and nanobridge-assisted coalescence of nanoclusters under the electric field were observed, wherein bipolar electrochemical reactions were identified as playing a crucial role in the morphological evolution of nanoclusters and the formation of CFs. The results provide insights into the optimization of ECM planar memristors based on 2D materials.
RESUMO
Metal sintering poses significant challenges for developing reliable catalytic systems toward high-temperature reactions, particularly those based on metal clusters with sizes below 3 nm. In this work, electrospun dual-oxide fibril-in-tubes consisting of CeO2 and Al2O3 are rationally designed in an all-in-one manner, to stabilize 2.3 nm Pt clusters with a Tammann temperature (sintering onset temperature) lower than 250 °C. The abundant pores and channels effectively stabilize the Pt clusters physically, while the strong support, CeO2, with high adhesion, pins Pt clusters firmly, and the adjacent weak support, Al2O3, with low adhesion, provides energy barriers to prevent the clusters and emitted Pt atom(s) from moving across the support. Therefore, the ultra-close 2.3 nm Pt clusters, featuring an average nearest neighboring distance of only 2.1 nm, were carefully stabilized against sintering at temperatures exceeding 750 °C, even in oxidative and steam-containing environments. In addition, this catalytic system can efficiently and durably serve in diesel combustion, a high-temperature exothermic reaction, showing no activity decline after 5 cycles. This work provides a comprehensive understanding of sinter-resistant catalytic systems, and presents new insights for the development of advanced nanocatalysts.
RESUMO
Ultrafine noble metals have emerged as advanced nanocatalysts in modern society but still suffer from unavoidable sintering at temperatures above 250 °C (e.g., Pt). In this work, closely packed CeO2 grains were confined elegantly in fibrous nanostructures and served as a porous support for stabilizing sub-3 nm Pt clusters. Through precisely manipulating the asymmetry of obtained nanofibers, uneven strain was induced within C-shaped CeO2 nanofibers with tensile strain at the outer side and compressive strain at the inner side. As a result, the enriched oxygen vacancies significantly improved adhesion of Pt to CeO2, thereby boosting the sinter-resistance of ultraclose sub-3 nm Pt clusters. Notably, no aggregation was observed even after exposure to humid air at 750 °C for 12 h, which is far beyond their Tammann temperature (sintering onset temperature, below 250 °C). In situ HAADF-STEM observation revealed a unique sintering mechanism, wherein Pt clusters initially migrate toward the grain boundaries with concentrated stain and undergo slight coalescence, followed by subsequent Ostwald ripening at higher temperatures. Moreover, the sinter-resistant Pt/C-shaped CeO2 effectively catalyzed soot combustion (over 700 °C) in a durable manner. This work provides a new insight for developing sinter-resistant catalysts from the perspective of strain engineering within nano-oxides.
RESUMO
Silicon is the cornerstone of electronics and photonics. In this context, almost all integrated devices derived from two-dimensional (2D) materials stay rooted in silicon technology. However, as the growth substrate, silicon has long been thought to be a hindrance for growing 2D materials through bottom-up methods that require high growth temperatures, and thus, indirect routes are usually considered instead. Although promising growth of large-area 2D materials on silicon has been demonstrated, the direct growth of single-crystalline materials using low-thermal-budget synthesis methods remains challenging. Here, we report the room-temperature growth of millimeter-scale single-crystal 2D metal halides on silicon substrates with a hydroxyl-terminated surface. Theoretical calculations reveal that the activation energy for surface diffusion can be reduced by an order of magnitude by terminating the surface with hydroxyl groups, from which on-silicon growth is greatly facilitated at room temperature and enables a 4-order-of-magnitude increase in area. The high quality and uniformity of the resulting single crystals are further evidenced. The optoelectronic devices employing the as-grown materials show an ultralow dark current of 10-13 A and a high detectivity of 1013 Jones, thereby corroborating a weak-light detection ability. These results would point to a rich space of surface modulation that can be used to surmount current limitations and demonstrate a promising strategy for growing 2D materials directly on silicon at room temperature to produce large single crystals.
RESUMO
Polydimethylsiloxane (PDMS) has emerged as a promising candidate for the dielectric layer in implantable sensors due to its exceptional biocompatibility, stability, and flexibility. This study introduces an innovative approach to produce graphene-reinforced PDMS (Gr-PDMS), where graphite powders are exfoliated into mono- and few-layer graphene sheets within the polymer solution, concurrently forming cross-linkages with PDMS. This method yields a uniformly distributed graphene within the polymer matrix with improved interfaces between graphene and PDMS, significantly reducing the percolation threshold of graphene dispersed in PDMS from 10% to 5%. As-synthesized Gr-PDMS exhibits improved mechanical and electrical properties, tested for potential use in capacitive pressure sensors. The results demonstrate an impressive pressure sensitivity up to 0.0273 kpa-1, 45 times higher than that of pristine PDMS and 2.5 times higher than the reported literature value. The Gr-PDMS showcases excellent pressure sensing ability and stability, fulfilling the requirements for implantable intracranial pressure (ICP) sensors.
RESUMO
Photothermal heating and photocatalytic treatment are two solar-driven water processing approaches by harnessing NIR and UV-vis light, respectively, which can fully utilize solar energy if integrated. However, it remains a challenge to achieve high performance in both approaches when integrated in a material due to uncontrollable heat diffusion. Here, we report a demonstration of heat confinement on photothermal sites and fluid cooling on photocatalysis sites at the nanoscale, within a well-designed heat and fluid confinement nanofiber reactor. Photothermal and photocatalytic nanostructures were alternatively aligned in electrospun nanofibers for on-demand nanofluidic thermal management as well as easy folding into 3D structures with enhanced light utilization and mass transfer. Such a design showed simultaneously high photothermal evaporation rate (2.59 kg m-2 h-1, exceeding the limit rate) and efficient photocatalytic upcycling of microplastics pollutant into valued products. Enabled by controlled photothermal heating, the valued main product (i.e., methyl acetate) can be evaporated out with 100% selectivity by in situ separation.
RESUMO
Tension-compression asymmetry is a topic of current interest in nanostructures, especially in strain engineering. Herein, we report a novel on-chip microelectromechanical system (MEMS) that can realize in situ quantitative mechanical testing of nanostructures under tension-compression functions. The mechanical properties of three kinds of nanostructures fabricated by focused ion beam (FIB) techniques were systematically investigated with the presented on-chip testing system. The results declare that both Pt nanopillars and C nanowires exhibit plastic deformation behavior under tension testing, with average Young's moduli of 70.06 GPa and 58.32 GPa, respectively. However, the mechanical deformation mechanisms of the two nanostructures changed in compression tests. The Pt nanopillar exhibited in-plane buckling behavior, while the C nanowire displayed 3D twisting behavior with a maximum strain of 25.47%, which is far greater than the tensile strain. Moreover, asymmetric behavior was also observed in the C nanospring during five loading-unloading tension-compression deformation tests. This work provides a novel insight into the asymmetric mechanical properties of nanostructures, with potential applications in nanotechnology research.
RESUMO
Memristors, known for their adjustable and non-volatile resistance, offer a promising avenue for emulating synapses. However, achieving pulse frequency-dependent synaptic plasticity in memristors or memristive systems necessitates further exploration. In this study, we present a novel approach to modulate the conductance of a memristor in a capacitor-memristor circuit by finely tuning the frequency of input pulses. Our experimental results demonstrate that these phenomena align with the long-term depression (LTD) and long-term potentiation (LTP) observed in synapses, which are induced by the frequency of action potentials. Additionally, we successfully implement a Hebbian-like learning mechanism in a simple circuit that connects a pair of memristors to a capacitor, resulting in observed associative memory formation and forgetting processes. Our findings highlight the potential of capacitor-memristor circuits in faithfully replicating the frequency-dependent behavior of synapses, thereby offering a valuable contribution to the development of brain-inspired neural networks.
RESUMO
Oriented attachment (OA) plays an important role in the assembly of nanoparticles and the regulation of their size and morphology, which is expected to be an effective means to modulate the properties of nanodiamonds (NDs). However, there remains a dearth of comprehensive investigation into the OA mechanism of NDs. Using in situ transmission electron microscopy, we conducted atomic-resolution investigation on the OA events of ND pairs under electron beam irradiation. The occurrence of an OA event is contingent upon the alignment between two ND surfaces, and the coalesced particles undergo recrystallization to form spherical shapes. Both experimental observations and molecular dynamics (MD) simulations reveal that ND pairs exhibit a preference for coalescing along the {111} surfaces. Additionally, MD simulations indicate that kinetic factors, such as contact surface area and contact angle, also influence the coalescence process.
RESUMO
Metal-organic frameworks (MOFs), composed of metal nodes and inorganic linkers, are promising for a wide range of applications due to their unique periodic frameworks. Understanding structure-activity relationships can facilitate the development of new MOFs. Transmission electron microscopy (TEM) is a powerful technique to characterize the microstructures of MOFs at the atomic scale. In addition, it is possible to directly visualize the microstructural evolution of MOFs in real time under working conditions via in situ TEM setups. Although MOFs are sensitive to high-energy electron beams, much progress has been made due to the development of advanced TEM. In this review, we first introduce the main damage mechanisms for MOFs under electron-beam irradiation and two strategies to minimize these damages: low-dose TEM and cryo-TEM. Then we discuss three typical techniques to analyze the microstructure of MOFs, including three-dimensional electron diffraction, imaging using direct-detection electron-counting cameras, and iDPC-STEM. Groundbreaking milestones and research advances of MOFs structures obtained with these techniques are highlighted. In situ TEM studies are reviewed to provide insights into the dynamics of MOFs induced by various stimuli. Additionally, perspectives are analyzed for promising TEM techniques in the research of MOFs' structures.
RESUMO
Zinc metal has considerable potential as a high-energy anode material for aqueous batteries due to its high theoretical capacity and environmental friendliness. However, dendrite growth and parasitic reactions at the electrode/electrolyte interface remain two serious problems for the Zn metal anode. Here, the heterostructured interface of ZnO rod array and CuZn5 layer is fabricated on the Zn substrate (ZnCu@Zn) to address these two issues. The zincophilic CuZn5 layer with abundant nucleation sites ensures the initial uniform Zn nucleation process during cycling. Meanwhile, the ZnO rod array grown on the surface of the CuZn5 layer can guide the subsequent homogeneous Zn deposition via spatial confinement and electrostatic attraction effects, leading to the dendrite-free Zn electrodeposition process. Consequently, the derived ZnCu@Zn anode exhibits an ultra-long lifespan of up to 2500 h with symmetric cells at the current density and capacity of 0.5 mA cm-2 /0.5 mA h cm-2 . Besides, a remarkable cyclability (75% retention for 2500 cycles at 2 A g-1 ) is achieved in the ZnCu@Zn||MnO2 full cell with a capacity of 139.7 mA h g-1 . This heterostructured interface with specific functional layers provides a feasible strategy for the design of high-performance metal anodes.
RESUMO
Photoelectrochemical device is a versatile platform for achieving various chemical transformations with solar energy. However, a grand challenge, originating from mass and electron transfer of triphase-reagents/products in gas phase, water/electrolyte/products in liquid phase and catalyst/photoelectrode in solid phase, largely limits its practical application. Here, we report the simulation-guided development of hierarchical triphase diffusion photoelectrodes, to improve mass transfer and ensure electron transfer for photoelectrochemical gas/liquid flow conversion. Semiconductor nanocrystals are controllably integrated within electrospun nanofiber-derived mat, overcoming inherent brittleness of semiconductors. The mechanically strong skeleton of free-standing mat, together with satisfactory photon absorption, electrical conductivity and hierarchical pores, enables the design of triphase diffusion photoelectrodes. Such a design allows photoelectrochemical gas/liquid conversion to be performed continuously in a flow cell. As a proof of concept, 16.6- and 4.0-fold enhancements are achieved for the production rate and product selectivity of methane conversion, respectively, with remarkable durability.
RESUMO
Sintering is a major concern for the deactivation of supported metals catalysts, which is driven by the force of decreasing the total surface energy of the entire catalytic system. In this work, a double-confinement strategy is demonstrated to stabilize 2.6 nm-Pt clusters against sintering on electrospun CeO2 nanofibers decorated by CeO2 nanocubes (m-CeO2 ). Thermodynamically, with the aid of CeO2 -nanocubes, the intrinsically irregular surface of polycrystalline CeO2 nanofibers becomes smooth, offering adjacent Pt clusters with decreased chemical potential differences on a relatively uniform surface. Kinetically, the Pt clusters are physically restricted on each facet of CeO2 nanocubes in a nanosized region. In situ high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation reveals that the Pt clusters can be stabilized up to 800 °C even in a high density, which is far beyond their Tammann temperature, without observable size growth or migration. Such a sinter-resistant catalytic system is endowed with boosted catalytic activity toward both the hydrogenation of p-nitrophenol after being aged at 500 °C and the sinter-promoting exothermic oxidation reactions (e.g., soot oxidation) at high temperatures over 700 °C. This work offers new opportunities for exploring sinter-resistant nanocatalysts, starting from the rational design of whole catalytic system in terms of thermodynamic and kinetic aspects.
RESUMO
TiO2 nanomaterials, especially one-dimensional TiO2 nanofibers fabricated by electrospinning, have received considerable attention in the past two decades, for a variety of basic applications. However, their safe use and easy recycling are still hampered by the inherently subpar mechanical performance. Here, we toughened polycrystalline TiO2 nanofibers by introducing Al3+-species at the very beginning of electrospinning. The resultant long-and-continuous TiO2 nanofibers achieved a Young's modulus of 653.8 MPa, which is ca. 25-fold higher than that of conventional TiO2 nanofibers. Within each nanofiber, amorphous Al2O3-based oxide effectively hindered the coalescence of TiO2 nanocrystals and potentially repaired the surface groves. The solid-state 17O-NMR spectra further revealed the toughening strategy on a molecular scale, where relatively flexible Ti-O-Al bonds replaced rigid O-Ti-O bonds at the interfaces of TiO2 and Al2O3. Moreover, the modified TiO2 nanofibers exhibited superb sinter-resistance, without cracking over 900 °C, which was dynamically monitored by TEM. Therefore, flexible-in-rigid TiO2 fibrous mats can be facilely folded into 3D sponges through origami art. As a potential showcase, the TiO2 sponges were demonstrated as a duarable and renewable filtrator with a high filtration efficiency of 99.97% toward PM2.5 and 99.99% toward PM10 after working for 300 min. This work provides a rational strategy to produce flexible oxide nanofibers and gives an in-depth understanding of the toughening mechanism from the macro-scale to the molecular-scale.
Assuntos
Nanofibras , Nanofibras/química , Titânio/química , Filtração , ÓxidosRESUMO
The nucleation and growth of well-defined nanopores are presented under electron irradiation in h-BN bilayers with various stacking angles. The pores are initiated by the formation of boron vacancies in each basal layer, and then evolve into either triangular or hexagonal pores, which is dependent on the relative rotation between BN layers. The result may shed light on the rational design and fabrication of nanopores.
RESUMO
Facilitating the mass transfer and enlarging the active surface area are two mutually exclusive demands in porous materials, while structural hierarchy could settle this issue by constructing continuous channels with different length scales. However, it is a great challenge to fabricate porous metallic materials with three or more geometrically similar hierarchy levels. Herein, a novel strategy combining vapor phase dealloying with electrochemical dealloying is proposed to achieve nanoporous gold (NPG) with three-level nested hierarchy (N3PG), in which the length scale covers micron (5866.8 ± 1445.5 nm), submicron (509.9 ± 106.0 nm), and nanometer (20.1 ± 3.0 nm) for each level. Notably, the structural superiority of such material is manifested by its faster charge transfer behaviors, as benchmarked with unimodal and bimodal NPG (N1PG and N2PG). The present strategy is of great potential to fabricate other hierarchically porous metals with enhanced functional and structural properties.
RESUMO
Aqueous fibrous batteries with tiny volume, light weight and stretchability have furthered wearable smart textile systems like biocompatible electronics for a more efficient use of electricity. Challenges still faced by fibrous batteries include not only the deficient actual capacity but the cyclability on the cathode side. Herein, an in situ anodic oxidation strategy is reported to prepare 3D N-doped/defect-rich V2O5-x·nH2O nanosheets (DVOH@NC) as fibrous cathodes for aqueous zinc-ion batteries (AZIBs). Benefiting from the substantially abundant reaction sites, enhanced electrical conductivity, short electron/ion diffusion path and high mass loading, the newly designed DVOH@NC fibrous electrode delivers impressive capacity (711.9 mA h cm-3 at 0.3 A cm-3) and long-term durability (95.5% capacity retention after 3000 cycles), substantially outperforming previously reported fibrous vanadium-based cathodes. First-principles density functional theory (DFT) calculations further revealed that the oxygen vacancies can weaken the electrostatic interaction between Zn2+ and the host cathode accompanying the low Zn2+ diffusion energy barrier. To highlight the potential applications, a prototype wearable fiber-shaped AZIB (FAZIB) with remarkable flexibility and extraordinary weaving capability was demonstrated. More encouragingly, the resulting FAZIB could be charged with solar cells and power a pressure sensor. Thus, our work provides a promising strategy to rationally construct high-performance flexible vanadium-based cathodes for next-generation wearable AZIBs.
Assuntos
Carbono , Vanádio , Fontes de Energia Elétrica , Íons , ZincoRESUMO
Mn-modified CeO2 nanomaterials have attracted extensive attention as efficient and promising catalysts for soot combustion due to their low cost and high catalytic activity. However, a detailed mechanism of how Mn promotes soot oxidation over CeO2 is still not clearly elucidated, which is crucial to further optimize the catalyst for achieving its practical applications. We here report a Mn-doped CeO2 catalyst with tunable surface Mn chemical valence states to study the Mn-promoting mechanism for improving CeO2 catalyst activity in soot oxidation. Experimental results show that Mn-doped CeO2 nanorods with surface Mn chemical valence states being optimized (Mn0.19Ce0.81O2) can lower the eliminating temperature of soot to 410 °C (T90) when in a loose contact and exhibit a strong resistance towards water molecules. The catalytic performances of Mn0.19Ce0.81O2 nanorods are comparable with those of other reported oxide catalysts both in the mimetic realistic and ideal reaction environments. Detailed characterization and theoretical calculation results demonstrate that balanced multiple Mn valences can dramatically enhance the catalysts' redox properties and their ability to activate O2 molecules, as well as improve the dynamic contact efficiency during the oxidation, which synergistically result in superior catalytic performances. This work might provide insight for the future design and preparation of catalysts to efficiently eliminate soot particles.
RESUMO
Plasmonic metals demonstrate significant potential for solar steam generation (SSG) because of their localized surface plasmon resonance effect. However, the inherently narrow absorption spectra of plasmonic metals significantly limit their applications. The fabrication of nanostructures is essential to achieve broadband solar absorption for high-efficiency vapor generation. Herein, a self-supporting black gold (Au) film with an ultrahigh porosity and a hierarchically porous structure is fabricated by formulating an extremely dilute Cu99 Au1 precursor and controlling the dealloying process. In situ and ex situ characterizations reveal the dealloying mechanism of Cu99 Au1 in a 1 m HNO3 solution as that involving the phase transformation of Cu(Au) â Au(Cu) â Au, giant volume shrinkage (≈87%), structural evolution/coarsening of ligaments, and development of ultrahigh porosity (86.2%). The multiscale structure, consisting of ultrafine nanoporous nanowires, aligned nanogaps, and various microgaps, provide efficient broadband absorption over 300-2500 nm, excellent hydrophilicity, and continuous water transport. In particular, the nanoporous black Au film shows high SSG performance with an evaporation rate of 1.51 kg m-2 h-1 and a photothermal conversion efficiency of 94.5% under a light intensity of 1 kW m-2 . These findings demonstrate that the nanoporous Au film has great potential for clean water production and seawater desalination.
RESUMO
Accurate motion feature extraction and recognition provide critical information for many scientific problems. Herein, a new paradigm for a wearable seamless multimode sensor with the ability to decouple pressure and strain stimuli and recognize the different joint motion states is reported. This wearable sensor is integrated into a unique seamless structure consisting of two main parts (a resistive component and a capacitive component) to decouple the different stimuli by an independent resistance-capacitance sensing mechanism. The sensor exhibits both high strain sensitivity (GF = 7.62, 0-140% strain) under the resistance mechanism and high linear pressure sensitivity (S = 3.4 kPa-1, 0-14 kPa) under the capacitive mechanism. The sensor can differentiate the motion characteristics of the positions and states of different joints with precise recognition (97.13%) with the assistance of machine learning algorithms. The unique integrated seamless structure is achieved by developing a layer-by-layer casting process that is suitable for large-scale manufacturing. The proposed wearable seamless multimode sensor and the convenient process are expected to contribute significantly to developing essential components in various emerging research fields, including soft robotics, electronic skin, health care, and innovative sports systems applications.