Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Small Methods ; : e2401297, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390840

RESUMO

Metabolic RNA labeling-based time-resolved single-cell RNA sequencing (scRNA-seq) has provided unprecedented tools to dissect the temporal dynamics and the complex gene regulatory networks of gene expression. However, this technology fails to reveal the spatial organization of cells in tissues, which also regulates the gene expression by intercellular communication. Herein, it is demonstrated that integrating time-resolved scRNA-seq with spatial transcriptomics is a new paradigm for spatiotemporal analysis. Metabolic RNA labeling-based time-resolved Well-TEMP-seq is first applied to profile the transcriptional dynamics of glioblastoma (GBM) cells and discover two potential pathways of EZH2-mediated mesenchymal transition in GBM. With spatial transcriptomics, it is further revealed that the crosstalk between CCL2+ malignant cells and IL10+ tumor-associated macrophages in the tumor microenvironment through an EZH2-FOSL2-CCL2 axis contributes to the mesenchymal transition in GBM. These discoveries show the power of integrative spatiotemporal scRNA-seq to elucidate the complex gene regulatory mechanism and advance the understanding of cellular processes in disease.

2.
Commun Biol ; 7(1): 1233, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354127

RESUMO

Overgrowth of Gardnerella vaginalis causes an imbalance in vaginal microecology. The pathogenicity of G. vaginalis is directly regulated by the cAMP receptor protein (CRP). In this study, we resolve the crystal structure of CRPGv at a resolution of 2.22 Å and find some significant differences from homologous proteins. The first 23 amino acids of CRPGv are inserted into the ligand binding pocket, creating a strong steric barrier to ligand entry that has not been seen previously in its homologues. In the absence of ligands, the two α helices used by CRPGv to bind oligonucleotide chains are exposed and can specifically bind TGTGA-N6-TCACA sequences. cAMP and other ligands of CRP homologs are not cofactors of CRPGv. There is no coding gene of the adenylate cyclase, and cAMP could not be identified in G. vaginalis by liquid chromatography tandem mass spectrometry. We speculate that CRPGv may achieve fine regulation through a conformational transformation different from that of its homologous proteins, and this conformational transformation is no longer dependent on small molecules, but may be aided by accessory proteins. CRPGv is the first discovered CRP that is not ligand-regulated, and its active conformation provides a structural basis for drug screening.


Assuntos
Gardnerella vaginalis , Ligantes , Gardnerella vaginalis/genética , Gardnerella vaginalis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/química , Cristalografia por Raios X , Sítios de Ligação , Modelos Moleculares , Sequência de Aminoácidos , Ligação Proteica , Conformação Proteica
3.
Micromachines (Basel) ; 15(9)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39337744

RESUMO

Mode (de)multiplexers (MDMs) serve as critical foundational elements within systems for facilitating high-capacity communication, relying on mode conversions achieved through directional coupler (DC) structures. However, DC structures are challenged by dispersion issues for broadband mode coupling, particularly for high-order modes. In this work, based on the principles of phase control theory, we have devised an approach to mitigate the dispersion challenges, focusing on a thin-film lithium niobate-on-onsulator (LNOI) platform. This solution involves integrating a customized inverse-dispersion section into the device architecture, offsetting minor phase shifts encountered during the mode coupling process. By employing this approach, we have achieved broadband mode conversion from TE0 to TE1 and TE0 to TE2 within a 300 nm wavelength range, and the maximum deviations were maintained below -0.68 dB and -0.78 dB, respectively. Furthermore, the device exhibited remarkably low crosstalk, reaching down to -26 dB.

4.
SLAS Technol ; 29(5): 100194, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39299506
6.
J Orthop Translat ; 48: 163-175, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39257437

RESUMO

Background: In the recent decade, there has been substantial progress in the technologies and philosophies associated with diagnosing and treating anterior cruciate ligament (ACL) injuries in China. The therapeutic efficacy of ACL reconstruction in re-establishing the stability of the knee joint has garnered widespread acknowledgment. However, the path toward standardizing diagnostic and treatment protocols remains to be further developed and refined. Objective: In this context, the Chinese Association of Orthopaedic Surgeons (CAOS) and the Chinese Society of Sports Medicine (CSSM) collaboratively developed an expert consensus on diagnosing and treating ACL injury, aiming to enhance medical quality through refining professional standards. Methods: The consensus drafting team invited experts across the Greater China region, including the mainland, Hong Kong, Macau, and Taiwan, to formulate and review the consensus using a modified Delphi method as a standardization approach. As members of the CSSM Lower Limb Study Group and the CAOS Arthroscopy and Sports Medicine Study Group, invited experts concentrated on two pivotal issues: "Graft Selection" and "Clinical Outcome Evaluation" during the second part of the consensus development. Results: This focused discussion ultimately led to a strong consensus on nine specific consensus terms. Conclusion: The consensus clearly states that ACL reconstruction has no definitive "gold standard" graft choice. Autografts have advantages in healing capability but are limited in availability and have potential donor site morbidities; allografts reduce surgical trauma but incur additional costs, and there are concerns about slow healing, quality control issues, and a higher failure rate in young athletes; synthetic ligaments allow for early rehabilitation and fast return to sport, but the surgery is technically demanding and incurs additional costs. When choosing a graft, one should comprehensively consider the graft's characteristics, the doctor's technical ability, and the patient's needs. When evaluating clinical outcomes, it is essential to ensure an adequate sample size and follow-up rate, and the research should include patient subjective scoring, joint function and stability, complications, surgical failure, and the return to sport results. Medium and long-term follow-ups should not overlook the assessment of knee osteoarthritis.

7.
Anal Chem ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250834

RESUMO

Current loop-mediated isothermal amplification (LAMP)-coupled clustered regularly interspaced short palindromic repeats (LAMP-CRISPR) biosensing in two-step or one-step formats has been applied to next-generation accurate molecular diagnosis. However, two-step LAMP-CRISPR assays intrinsically confront aerosol contamination, while one-step assays possess a compromised detection performance. To this end, we propose an enhanced two-step LAMP-CRISPR assay (ETL-CRISPR) with an engineered Zst polymerase to mediate ultrasensitive DNA detection and thoroughly eliminate aerosol contamination. Instead of supplementing any dTTP, the newly engineered Zst polymerase can efficiently polymerize four oligonucleotides (dATP, dCTP, dGTP, and dUTP), thereby enabling contamination-free and ultrasensitive ETL-CRISPR assay. By targeting the L1 gene of human papillomaviruses (HPV) 16 and the E7 gene of HPV18, our ETL-CRISPR assay achieves high specificity and single-copy level sensitivity within 1 h. Furthermore, we validated the assay by using 85 HPV clinical swab samples with an accuracy of 98.8%, which is comparable to the real-time quantitative polymerase chain reaction. Therefore, ETL-CRISPR provides a straightforward strategy for the contamination-free and ultrasensitive point-of-care diagnosis of clinical pathogens.

8.
Biosens Bioelectron ; 267: 116767, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39270360

RESUMO

Hydrogel sensors have broad application prospects in human motion monitoring and sweat composition detection. However, hydrogel-based sensors are faced with challenges such as low accuracy and poor mechanical properties of analytes detection. Based on mussel-inspired chemistry, we synthesized mesoporous silica@polydopamine-Au (MPS@PDA-Au) nanomaterials and designed a self-healing nanocomposite hydrogel to monitor human movement and ascorbic acid detection in sweat. Mesoporous silica (MPS) possess orderly mesoporous structure. Dopamine (DA) polymerized on the surface of MPS to generate polydopamine (PDA), forming the composite material MPS@PDA-Au. This composite was then embedded into polyvinyl alcohol (PVA) hydrogels through a simple freeze-thaw cycle process. The hydrogels have achieved excellent deformable ability (508.6%), self-healing property (90.5%) and mechanical strength (2.9 MPa). The PVA/MPS@PDA-Au hydrogel sensors had the characteristics of fast response time (123.2 ms), wide strain sensing range (0-500%), excellent fatigue resistance and stability in human detection. The detection range of ascorbic acid (AA) in sweat was wide (8.0 µmol/L-100.0 µmol/L) and the detection limit was low (3.3 µmol/L). Therefore, these hydrogel sensors have outstanding application prospects in human motion monitoring and sweat composition detection.

9.
PLoS Negl Trop Dis ; 18(8): e0012421, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141677

RESUMO

Toxoplasma gondii (T. gondii) is widely spread around the world, which can cause serious harm to immunosuppressed patients. Currently, the commercial test kits are poor at assessing T. gondii infection and vaccine effectiveness, making an urgent need to exploit effective enzyme-linked immunosorbent assay with great performance to compensate for this deficiency. Here, the TgIMP1 recombinant protein was expressed in E. coli BL(21) cells. The TgIMP1 was purified with affinity chromatography and the reactivity was retained with anti-TgIMP1 antibodies. The TgIMP1 was then used to develop an indirect ELISA (IMP1-iELISA) and the reaction conditions of IMP1-iELISA were optimized. As a result, the cut-off value was determined to be 0.2833 by analyzing the OD450nm values of forty T. gondii-negative sera. The coefficient of variation of 6 T. gondii-positive sera within and between runs were both less than 10%. The IMP1-iELISA was non-cross-reactive with the sera of cytomegalovirus, herpes virus, rubella virus, Cryptosporidium spp., Theileria spp., Neospora spp. and Plasmodium spp.. Furthermore, the sensitivity and specificity of IMP1-iELISA were 98.9% and 96.7%, respectively, based on testing 150 serum samples. The results suggest that this IMP1-iELISA is specific, sensitive, repeatable and can be applied to the detection of T. gondii infections in the medical and health industries.


Assuntos
Anticorpos Antiprotozoários , Ensaio de Imunoadsorção Enzimática , Toxoplasma , Toxoplasmose , Animais , Humanos , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Ensaio de Imunoadsorção Enzimática/métodos , Escherichia coli/genética , Imunoglobulina G/sangue , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Toxoplasma/imunologia , Toxoplasma/genética , Toxoplasmose/diagnóstico , Toxoplasmose/imunologia , Toxoplasmose/parasitologia
10.
Gut Microbes ; 16(1): 2391535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39182245

RESUMO

BACKGROUND: Chronic infection with the neurotropic parasite Toxoplasma gondii (T. gondii) can cause anxiety and gut microbiota dysbiosis in hosts. However, the potential role of gut microbiota in anxiety induced by the parasite remains unclear. METHODS: C57BL/6J mice were infected with 10 cysts of T. gondii. Antibiotic depletion of gut microbiota and fecal microbiota transplantation experiments were utilized to investigate the causal relationship between gut microbiota and anxiety. Anxiety-like behaviors were examined by the elevated plus maze test and the open field test; blood, feces, colon and amygdala were collected to evaluate the profiles of serum endotoxin (Lipopolysaccharide, LPS) and serotonin (5-hydroxytryptamine, 5-HT), gut microbiota composition, metabolomics, global transcriptome and neuroinflammation in the amygdala. Furthermore, the effects of Diethyl butylmalonate (DBM, an inhibitor of mitochondrial succinate transporter, which causes the accumulation of endogenous succinate) on the disorders of the gut-brain axis were evaluated. RESULTS: Here, we found that T. gondii chronic infection induced anxiety-like behaviors and disturbed the composition of the gut microbiota in mice. In the amygdala, T. gondii infection triggered the microglial activation and neuroinflammation. In the colon, T. gondii infection caused the intestinal dyshomeostasis including elevated colonic inflammation, enhanced bacterial endotoxin translocation to blood and compromised intestinal barrier. In the serum, T. gondii infection increased the LPS levels and decreased the 5-HT levels. Interestingly, antibiotics ablation of gut microbiota alleviated the anxiety-like behaviors induced by T. gondii infection. More importantly, transplantation of the fecal microbiota from T. gondii-infected mice resulted in anxiety and the transcriptomic alteration in the amygdala of the antibiotic-pretreated mice. Notably, the decreased abundance of succinate-producing bacteria and the decreased production of succinate were observed in the feces of the T. gondii-infected mice. Moreover, DBM administration ameliorated the anxiety and gut barrier impairment induced by T. gondii infection. CONCLUSIONS: The present study uncovers a novel role of gut microbiota in mediating the anxiety-like behaviors induced by chronic T. gondii infection. Moreover, we show that DBM supplementation has a beneficial effect on anxiety. Overall, these findings provide new insights into the treatment of T. gondii-related mental disorders.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Toxoplasma , Animais , Camundongos , Ansiedade/microbiologia , Toxoplasma/fisiologia , Masculino , Transplante de Microbiota Fecal , Disbiose/microbiologia , Tonsila do Cerebelo/metabolismo , Comportamento Animal , Toxoplasmose/fisiopatologia , Toxoplasmose/psicologia , Toxoplasmose/parasitologia , Toxoplasmose/microbiologia , Doença Crônica , Eixo Encéfalo-Intestino/fisiologia , Modelos Animais de Doenças , Colo/microbiologia , Colo/parasitologia
11.
Langmuir ; 40(28): 14602-14612, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38963442

RESUMO

Cellulose nanocrystals (CNCs) have garnered significant attention as a modifiable substrate because of their exceptional performances, including remarkable degradability, high tensile strength, high elastic modulus, and biocompatibility. In this article, the successful adsorption of phytic acid (PA) onto the surface of cellulose nanocrystals @polydopamine (CNC@PDA) was achieved. Taking inspiration from mussels, a dopamine self-polymerization reaction was employed to coat the surface of CNCs with PDA. Utilizing Pickering emulsion, the CNC@PDA-PA nanomaterial was obtained by grafting PA onto CNC@PDA. An environmentally friendly hydrogel was prepared through various reversible interactions using poly(acrylic acid) (PAA) and Fe3+ as raw materials with the assistance of CNC@PDA-PA. By multiple hydrogen bonding and metal-ligand coordination, nanocomposite hydrogels exhibit remarkable mechanical properties (the tensile strength and strain were 1.82 MPa and 442.1%, respectively) in addition to spectacular healing abilities (96.6% after 5 h). The study aimed to develop an innovative approach for fabricating nanocomposite hydrogels with exceptional self-healing capabilities.

12.
Sci One Health ; 3: 100064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077388

RESUMO

Background: In the 21st century, as globalization accelerates and global public health crises occur, the One Health approach, guided by the holistic thinking of human-animal-environment and emphasizing interdisciplinary collaboration to address global health issues, has been strongly advocated by the international community. An immediate requirement exists for the creation of an assessment tool to foster One Health initiatives on both global and national scales. Methods: Built upon extensive expert consultations and dialogues, this follow-up study enhances the 2022 global One Health index (GOHI) indicator system. The GOHI framework is enriched by covering three indices, e.g. external drivers index (EDI), intrinsic drivers index (IDI), and core drivers index (CDI). The comprehensive indicator system incorporates 13 key indicators, 50 indicators, and 170 sub I-indicators, utilizing a fuzzy analytic hierarchy process to ascertain the weight for each indicator. Weighted and summed, the EDI, IDI, and CDI scores contribute to the computation of the overall GOHI 2022 score. By comparing the ranking and the overall scores among the seven regions and across 160 countries/territories, we have not only derived an overall profile of the GOHI 2022 scores, but also assessed the GOHI framework. We also compared rankings of indicators and sub I-indicators to provide greater clarity on the strengths and weaknesses of each region within the One Health domains. Results: The GOHI 2022 performance reveals significant disparities between countries/territories ranged from 39.03 to 70.61. The global average score of the GOHI 2022 is 54.82. The average score for EDI, IDI, and CDI are 46.57, 58.01, and 57.25, respectively. In terms of global rankings, countries from North America, Europe and Central Asia, East Asia and Pacific present higher scores. In terms of One Health domains of CDI, the lowest scores are observed in antimicrobial resistance (median: 43.09), followed by food security (median: 53.78), governance (median: 54.77), climate change (median: 64.12) and zoonotic diseases (median: 69.23). Globally, the scores of GOHI vary spatially, with the highest score in North America while lowest in sub-Saharan Africa. In addition, evidence shows associations between the socio-demographic profile of countries/territories and their GOHI performance in certain One Health scenarios. Conclusion: The objective of GOHI is to guide impactful strategies for enhancing capacity building in One Health. With advanced technology and an annually updated database, intensifying efforts to refine GOHI's data-mining methodologies become imperative. The goal is to offer profound insights into disparities and progressions in practical One Health implementation, particularly in anticipation of future pandemics.

13.
Discov Oncol ; 15(1): 212, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836972

RESUMO

BACKGROUND: Liquid biopsies, for example, exosomal circular RNA (circRNA) can be used to assess potential predictive markers for hepatocellular carcinoma (HCC) in patients after curative resection. This study aimed to search for effective prognostic biomarkers for HCC in patients after surgical resection based on exosomal circRNA expression profiles. We developed two nomograms incorporating circRNAs to predict the postoperative recurrence-free survival (RFS) and overall survival (OS) of HCC patients. METHOD: Plasma exosomes isolated from HCC patients and healthy individuals were used for circRNA microarray analysis to explore differentially expressed circRNAs. Pearson correlation analysis was used to evaluate the correlation between circRNAs and clinicopathological features. Cox regression analysis was used to explore the correlation between circRNA and postoperative survival time as well as recurrence time. A nomogram based on circRNA and clinicopathological characteristics was established and further evaluated to predict prognosis and recurrence. RESULT: Among 60 significantly upregulated circRNAs and 25 downregulated circRNAs, hsa_circ_0029325 was selected to verify its power for predicting HCC outcomes. The high expression level of exosomal hsa_circ_0029325 was significantly correlated with OS (P = 0.001, HR = 2.04, 95% CI 1.41-3.32) and RFS (P = 0.009, HR = 1.62, 95% CI 1.14-2.30). Among 273 HCC patients, multivariate regression analysis showed that hsa_circ_0029325 (HR = 1.96, 95% CI 1.21-3.18), tumor size (HR = 2.11, 95% CI 1.33-3.32), clinical staging (HR = 2.31, 95% CI 1.54-3.48), and tumor thrombus (HR = 1.74, 95% CI 1.12-2.7) were independent risk factors for poor prognosis in HCC patients after radical resection. These independent predictors of prognosis were incorporated into the two nomograms. The AUCs under the 1-year, 3-year, and 5-year survival and recurrence curves of the OS and RFS nomograms were 0.755, 0.749, and 0.742 and 0.702, 0.685, and 0.642, respectively. The C-index, calibration curves, and clinical decision curves showed that the two prediction models had good predictive performance. These results were verified in the validation cohort with 90 HCC patients. CONCLUSION: Our study established two reliable nomograms for predicting recurrence and prognosis in HCC patients. We also show that it is feasible to screen potential predictive markers for HCC after curative resection through exosomal circRNA expression profile analysis.

14.
Brain Behav Immun ; 119: 394-407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608743

RESUMO

Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, decreased butyrate production was observed in the serum of human subjects with high levels of anti-T. gondii IgG. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.


Assuntos
Disfunção Cognitiva , Disbiose , Microbioma Gastrointestinal , Hipocampo , Toxoplasma , Toxoplasmose , Animais , Camundongos , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/microbiologia , Toxoplasmose/metabolismo , Toxoplasmose/complicações , Disbiose/metabolismo , Humanos , Masculino , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Transplante de Microbiota Fecal/métodos , Butiratos/metabolismo , Feminino , Cognição/fisiologia
15.
Infect Dis Poverty ; 13(1): 28, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610035

RESUMO

BACKGROUND: Despite the increasing focus on strengthening One Health capacity building on global level, challenges remain in devising and implementing real-world interventions particularly in the Asia-Pacific region. Recognizing these gaps, the One Health Action Commission (OHAC) was established as an academic community for One Health action with an emphasis on research agenda setting to identify actions for highest impact. MAIN TEXT: This viewpoint describes the agenda of, and motivation for, the recently formed OHAC. Recognizing the urgent need for evidence to support the formulation of necessary action plans, OHAC advocates the adoption of both bottom-up and top-down approaches to identify the current gaps in combating zoonoses, antimicrobial resistance, addressing food safety, and to enhance capacity building for context-sensitive One Health implementation. CONCLUSIONS: By promoting broader engagement and connection of multidisciplinary stakeholders, OHAC envisions a collaborative global platform for the generation of innovative One Health knowledge, distilled practical experience and actionable policy advice, guided by strong ethical principles of One Health.


Assuntos
Saúde Única , Animais , Ásia , Fortalecimento Institucional , Políticas , Zoonoses/prevenção & controle
16.
Anal Chem ; 96(16): 6301-6310, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597061

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a transformative technology that unravels the intricate cellular state heterogeneity. However, the Poisson-dependent cell capture and low sensitivity in scRNA-seq methods pose challenges for throughput and samples with a low RNA-content. Herein, to address these challenges, we present Well-Paired-Seq2 (WPS2), harnessing size-exclusion and quasi-static hydrodynamics for efficient cell capture. WPS2 exploits molecular crowding effect, tailing activity enhancement in reverse transcription, and homogeneous enzymatic reaction in the initial bead-based amplification to achieve 3116 genes and 8447 transcripts with an average of ∼20000 reads per cell. WPS2 detected 1420 more genes and 4864 more transcripts than our previous Well-Paired-Seq. It sensitively characterizes transcriptomes of low RNA-content single cells and nuclei, overcoming the Poisson limit for cell and barcoded bead capture. WPS2 also profiles transcriptomes from frozen clinical samples, revealing heterogeneous tumor copy number variations and intercellular crosstalk in clear cell renal cell carcinomas. Additionally, we provide the first single-cell-level characterization of rare metanephric adenoma (MA) and uncover potential specific markers. With the advantages of high sensitivity and high throughput, WPS2 holds promise for diverse basic and clinical research.


Assuntos
Análise de Célula Única , Transcriptoma , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , RNA/genética , Análise de Sequência de RNA , Neoplasias Renais/genética , Neoplasias Renais/patologia , Sequenciamento de Nucleotídeos em Larga Escala
17.
J Org Chem ; 89(9): 6106-6116, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38632856

RESUMO

An electrochemical oxidative cross-coupling strategy for the synthesis of N-sulfenylsulfoximines from sulfoximines and thiols was accomplished, giving diverse N-sulfenylsulfoximines in moderate to good yields. Moreover, this strategy can be extended to construct the N-P bond of N-phosphinylated sulfoximines. With electrons as reagents, the oxidative dehydrogenation cross-coupling reaction proceeds smoothly in the absence of traditional redox reagents.

18.
J Clin Transl Hepatol ; 12(3): 287-297, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38426194

RESUMO

The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.

19.
Radiat Res ; 201(4): 310-316, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38355101

RESUMO

The increased expression of Copine 1 (CPNE1) has been observed in various cancers, which promotes cell proliferation, apoptosis, and radio resistance. However, the potential mechanism of CPNE1 in nasopharyngeal carcinoma (NPC) remains elusive. Consequently, our objective was to investigate the role of CPNE1 in regulating proliferation and radio resistance of NPC. CPNE1 expression in NPC and normal patients were obtained from Cancer Genome Atlas (TCGA) database. An elevated CPNE1 was observed in NPC patients and cells (C666-1, SUNE-1, and HNE-1). Then, C666-1 and SUNE-1 cells were subjected to si-CPNE1 under different radiations (0-8 Gy). Cell growth and proliferation were measured by CCK8 and EDU assays, which demonstrated si-CPNE1 suppressed proliferation. Colony formation was performed to detect cell viability under different radiation therapy and survival curve of cell was plotted, which indicated that CPNE1 knockdown improved cell radiosensitivity. Additionally, flow cytometry showed silence of CPNE1 enhanced apoptosis rate in radiated cells. To further investigate the mechanisms of CPNE1 regulating NPC, the expression of activated phosphate Akt (p-Akt) was assessed through western blotting. We observed elevated p-Akt in si-CPNE1 transfected C666-1 and SUNE-1 cells. In conclusion, these results demonstrated that CPNE1 expression is elevated in nasopharyngeal carcinoma cells, and its silencing could attenuate nasopharyngeal carcinoma advancement and improve radiosensitivity to radiation therapy by controlling Akt activation.


Assuntos
Neoplasias Nasofaríngeas , Proteínas Proto-Oncogênicas c-akt , Humanos , Carcinoma Nasofaríngeo/radioterapia , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , Linhagem Celular Tumoral , Apoptose/genética , Proliferação de Células/genética
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124058, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387411

RESUMO

A series fluorescent probes (TBM-Cx (x = 1, 4, 8)) were designed based on embedding various alkoxy chains on the electron donor of triphenylamine (TPA)-based dicyanovinyl (MT) compound with an electron-deficient benzothiadiazole (BTD) for sensitive, selective, and visualizing detection of cyanide in aqueous solution. Due to the nucleophilic addition of CN-, the intramolecular charge transfer (ICT) of these probes was inhibited by the destroyed conjugated structure, exhibiting excellent "turn-on" fluorescence response toward cyanide anion (CN-) in tetrahydrofuran (THF). However, the alkoxy chains with different lengths embedded in TPA not only enhance the sensitivity and solubility, but also regulate the emission behavior from ICT to aggregation-induced emission (AIE) characteristics. The binding mechanism and AIE sensing performances between the probes and CN- have been investigated and compared in THF/water mixture by spectral tools and theoretical calculations. The results showed that the ICT-based TBM-C1 probe with methoxy chain showed significantly turn-on fluorescence response to CN- as low as 0.077 µM in THF/water solution at high water fraction (90 %). Due to the AIE sensing process, TBM-C1 was successfully employed to determine CN- in food and water samples, image CN- in living cells and BALB/c mice, and prepare test kits for visualizing cyanide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA