RESUMO
This paper discusses optimizing desktop image quality and bandwidth consumption in remote IoT GUI desktop scenarios. Remote desktop tools, which are crucial for work efficiency, typically employ image compression techniques to manage bandwidth. Although JPEG is widely used for its efficiency in eliminating redundancy, it can introduce quality loss with increased compression. Recently, deep learning-based compression techniques have emerged, challenging traditional methods like JPEG. This study introduces an optimized RFB (Remote Frame Buffer) protocol based on a convolutional neural network (CNN) image compression algorithm, focusing on human visual perception in desktop image processing. The improved RFB protocol proposed in this paper, compared to the unoptimized RFB protocol, can save 30-80% of bandwidth consumption and enhances remote desktop image quality, as evidenced by improved PSNR and MS-SSIM values between the remote desktop image and the original image, thus providing superior desktop image transmission quality.
RESUMO
With the rapid advancement of network communication and big data technologies, the Internet of Things (IoT) has permeated every facet of our lives. Meanwhile, the interconnected IoT devices have generated a substantial volume of data, which possess both economic and strategic value. However, owing to the inherently open nature of IoT environments and the limited capabilities and the distributed deployment of IoT devices, traditional access control methods fall short in addressing the challenges of secure IoT data management. On the one hand, the single point of failure issue is inevitable for the centralized access control schemes. On the other hand, most decentralized access control schemes still face problems such as token underutilization, the insecure distribution of user permissions, and inefficiency.This paper introduces a blockchain-based access control framework to address these challenges. Specifically, the proposed framework enables data owners to host their data and achieves user-defined lightweight data management. Additionally, through the strategic amalgamation of smart contracts and hash-chains, our access control scheme can limit the number of times (i.e., n-times access) a user can access the IoT data before the deadline. This also means that users can utilize their tokens multiple times (predefined by the data owner) within the deadline, thereby improving token utilization while ensuring strict access control. Furthermore, by leveraging the intrinsic characteristics of blockchain, our framework allows data owners to gain capabilities for auditing the access records of their data and verifying them. To empirically validate the effectiveness of our proposed framework and approach, we conducted extensive simulations, and the experimental results demonstrated the feasibility and efficiency of our solution.
RESUMO
The Internet has become the main channel of information communication, which contains a large amount of secret information. Although network communication provides a convenient channel for human communication, there is also a risk of information leakage. Traditional image steganography algorithms use manually crafted steganographic algorithms or custom models for steganography, while our approach uses ordinary OCR models for information embedding and extraction. Even if our OCR models for steganography are intercepted, it is difficult to find their relevance to steganography. We propose a novel steganography method for character-level text images based on adversarial attacks. We exploit the complexity and uniqueness of neural network boundaries and use neural networks as a tool for information embedding and extraction. We use an adversarial attack to embed the steganographic information into the character region of the image. To avoid detection by other OCR models, we optimize the generation of the adversarial samples and use a verification model to filter the generated steganographic images, which, in turn, ensures that the embedded information can only be recognized by our local model. The decoupling experiments show that the strategies we adopt to weaken the transferability can reduce the possibility of other OCR models recognizing the embedded information while ensuring the success rate of information embedding. Meanwhile, the perturbations we add to embed the information are acceptable. Finally, we explored the impact of different parameters on the algorithm with the potential of our steganography algorithm through parameter selection experiments. We also verify the effectiveness of our validation model to select the best steganographic images. The experiments show that our algorithm can achieve a 100% information embedding rate and more than 95% steganography success rate under the set condition of 3 samples per group. In addition, our embedded information can be hardly detected by other OCR models.
Assuntos
Algoritmos , HumanosRESUMO
Users of social networks have a variety of social statuses and roles. For example, the users of Weibo include celebrities, government officials, and social organizations. At the same time, these users may be senior managers, middle managers, or workers in companies. Previous studies on this topic have mainly focused on using the categorical, textual and topological data of a social network to predict users' social statuses and roles. However, this cannot fully reflect the overall characteristics of users' social statuses and roles in a social network. In this paper, we consider what social network structures reflect users' social statuses and roles since social networks are designed to connect people. Taking an Enron email dataset as an example, we analyzed a preprocessing mechanism used for social network datasets that can extract users' dynamic behavior features. We further designed a novel social network representation learning algorithm in order to infer users' social statuses and roles in social networks through the use of an attention and gate mechanism on users' neighbors. The extensive experimental results gained from four publicly available datasets indicate that our solution achieves an average accuracy improvement of 2% compared with GraphSAGE-Mean, which is the best applicable inductive representation learning method.
RESUMO
Nowadays, millions of people use Online Social Networks (OSNs) like Twitter, Facebook and Sina Microblog, to express opinions on current events. The widespread use of these OSNs has also led to the emergence of social bots. What is more, the existence of social bots is so powerful that some of them can turn into influential users. In this paper, we studied the automated construction technology and infiltration strategies of social bots in Sina Microblog, aiming at building friendly and influential social bots to resist malicious interpretations. Firstly, we studied the critical technology of Sina Microblog data collection, which indicates that the defense mechanism of that is vulnerable. Then, we constructed 96 social bots in Sina Microblog and researched the influence of different infiltration strategies, like different attribute settings and various types of interactions. Finally, our social bots gained 5546 followers in the 42-day infiltration period with a 100% survival rate. The results show that the infiltration strategies we proposed are effective and can help social bots escape detection of Sina Microblog defense mechanism as well. The study in this paper sounds an alarm for Sina Microblog defense mechanism and provides a valuable reference for social bots detection.