Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 849: 157906, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35944647

RESUMO

Increasing atmospheric nitrogen (N) deposition has resulted in phosphorus (P) limitation in multiple terrestrial ecosystems, yet how plants coordinate aboveground and belowground strategies to adapt to such P deficiency remains unclear. In this study, we conducted a field N fertilization experiment in two alpine coniferous plantations (Picea asperata Mast. and Pinus armandii Franch.) with different soil N availability on the eastern Tibetan Plateau of China, to examine N addition effects on plant nutrient limiting status and plant adaptive strategies corresponding to aboveground P conservation and belowground P acquisition. The results showed that N addition aggravated P deficiency in both plantations, as indicated by decreased needle P concentrations and increased N:P ratios, and that plant strategies for addressing such P deficiency differed in the two plantations with different initial soil N availabilities. In the P. asperata plantation with relatively high N availability, significantly enhanced needle phosphatase activity and shifts in P fraction allocation (downregulation of the structural P fraction and increased allocation to the residual P fraction) co-occurred with increased rhizosphere effects on phosphatase activity under N addition, indicating a synergistic strategy of aboveground P conservation and belowground P mining to alleviate P deficiency. In the P. armandii plantation with relatively low N availability, however, N addition only enhanced phosphatase activity and increased allocation to residual P fraction in the aboveground but had little effect on belowground P acquisition-associated traits, suggesting a decoupling relationship between aboveground P conservation and belowground P acquisition. This study highlights the vital significance of initial soil nutrient availability in regulating the coordination of aboveground and belowground strategic alternatives, emphasizing the need to integrate soil nutrient conditions for a holistic understanding of forest adaptation to anthropogenic N enrichment.


Assuntos
Ecossistema , Traqueófitas , Biomassa , Florestas , Nitrogênio/análise , Monoéster Fosfórico Hidrolases , Fósforo , Plantas , Solo/química
2.
Tumour Biol ; 39(10): 1010428317713390, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29064327

RESUMO

Triple-negative breast cancer is a kind of breast cancer with poor prognosis and special biological behavior, which lacked endocrine therapy and targeted therapy. We investigate the effect of human APE1 (apurinic/apyrimidyl endonuclease 1), a rate-limiting enzyme of base excision repair, on the prognosis in triple-negative breast cancer and drug sensitivity of olaparib. The expression of APE1 was detected by immunohistochemistry in the triple-negative breast cancer tissues and its effect on survival of triple-negative breast cancer patients was followed. To find whether APE1 effect the drug sensitivity in triple-negative breast cancer cells, the APE1-knockout HCC1937 cell line (triple-negative breast cancer cell line) was established by CRISPR/Cas9 system. Then, we use the wild-type and knockout one to test the drug sensitivity of olaparib. The expression of APE1 in triple-negative breast cancer tissues was significantly higher than that in the adjacent tissues (85.6% vs 14.4%) and its expression was related to tumor size (p < 0.05). We also found that it is an independent prognostic factor in patients with triple-negative breast cancer (overall survival, p = 0.01). In vitro assay, the half maximal inhibitory concentration of olaparib in HCC1937-APE1-KO was significantly increased (17.22 vs 91.85 µM) compared to the wild type. The growth curve showed that olaparib had a stronger lethality on HCC1937 compared to HCC1937- APE1-KO (p < 0.05 on day 3). HCC1937 resulted in more mitotic G2/M arrest and increased apoptosis rate after treatment with 40 µM of olaparib, while HCC1937-APE1-KO did not change significantly. When HCC1937 was treated with different concentrations of olaparib, it was found that APE1 expression decreased more significantly at 15 µM of olaparib was. In HCC1937-APE1-KO, the expression of endogenous poly (ADP-ribose) polymerase 1 was also less than that of HCC1937. These results suggested that the expression of APE1 was an important basis for the maintenance of poly (ADP-ribose) polymerase 1, and the deletion of APE1 may be related to the resistance of olaparib.


Assuntos
Antineoplásicos/farmacologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Adulto , Idoso , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Técnicas de Inativação de Genes , Humanos , Imuno-Histoquímica , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Análise Serial de Tecidos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA