Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621973

RESUMO

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Assuntos
Artemisia annua , Artemisininas , Lactonas , Artemisia annua/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Melhoramento Vegetal , Artemisininas/análise , Aldeídos
2.
J Agric Food Chem ; 72(14): 8269-8283, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557049

RESUMO

Many species of the Urticaceae family are important cultivated fiber plants that are known for their economic and industrial values. However, their secondary metabolite profiles and associated biosynthetic mechanisms have not been well-studied. Using Laportea bulbifera as a model, we conducted widely targeted metabolomics, which revealed 523 secondary metabolites, including a unique accumulation of flavonol glycosides in bulblet. Through full-length transcriptomic and RNA-seq analyses, the related genes in the flavonoid biosynthesis pathway were identified. Finally, weighted gene correlation network analysis and functional characterization revealed four LbUGTs, including LbUGT78AE1, LbUGT72CT1, LbUGT71BX1, and LbUGT71BX2, can catalyze the glycosylation of flavonol aglycones (kaempferol, myricetin, gossypetin, and quercetagetin) using UDP-Gal and UDP-Glu as the sugar donors. LbUGT78AE1 and LbUGT72CT1 showed substrate promiscuity, whereas LbUGT71BX1 and LbUGT71BX2 exhibited different substrate and sugar donor selectivity. These results provide a genetic resource for studying Laportea in the Urticaceae family, as well as key enzymes responsible for the metabolism of valuable flavonoid glycosides.


Assuntos
Glicosídeos , Urticaceae , Glicosídeos/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Flavonoides , Flavonóis , Plantas/metabolismo , Difosfato de Uridina , Perfilação da Expressão Gênica , Urticaceae/metabolismo , Açúcares
3.
Comput Struct Biotechnol J ; 23: 1106-1116, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38495554

RESUMO

Flavonoid glycosides are widespread in plants, and are of great interest owing to their diverse biological activities and effectiveness in preventing chronic diseases. Periploca forrestii, a renowned medicinal plant of the Apocynaceae family, contains diverse flavonoid glycosides and is clinically used to treat rheumatoid arthritis and traumatic injuries. However, the mechanisms underlying the biosynthesis of these flavonoid glycosides have not yet been elucidated. In this study, we used widely targeted metabolomics and full-length transcriptome sequencing to identify flavonoid diversity and biosynthetic genes in P. forrestii. A total of 120 flavonoid glycosides, including 21 C-, 96 O-, and 3 C/O-glycosides, were identified and annotated. Based on 24,123 full-length coding sequences, 99 uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) were identified and classified into 14 groups. Biochemical assays revealed that four UGTs exhibited O-glycosyltransferase activity toward apigenin and luteolin. Among them, PfUGT74B4 and PfUGT92A8 were highly promiscuous and exhibited multisite O-glycosylation or consecutive glycosylation activities toward various flavonoid aglycones. These four glycosyltransferases may significantly contribute to the diversity of flavonoid glycosides in P. forrestii. Our findings provide a valuable genetic resource for further studies on P. forrestii and insights into the metabolic engineering of bioactive flavonoid glycosides.

4.
Plant Commun ; 5(3): 100777, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38053331

RESUMO

Proanthocyanidins (PAs) are the second most abundant plant phenolic natural products. PA biosynthesis is regulated by the well-documented MYB/bHLH/WD40 (MBW) complex, but how this complex itself is regulated remains ill defined. Here, in situ hybridization and ß-glucuronidase staining show that APETALA2 (AP2), a well-defined regulator of flower and seed development, is strongly expressed in the seed coat endothelium, where PAs accumulate. AP2 negatively regulates PA content and expression levels of key PA pathway genes. AP2 activates MYBL2 transcription and interacts with MYBL2, a key suppressor of the PA pathway. AP2 exerts its function by directly binding to the AT-rich motifs near the promoter region of MYBL2. Molecular and biochemical analyses revealed that AP2 forms AP2-MYBL2-TT8/EGL3 complexes, disrupting the MBW complex and thereby repressing expression of ANR, TT12, TT19, and AHA10. Genetic analyses revealed that AP2 functions upstream of MYBL2, TT2, and TT8 in PA regulation. Our work reveals a new role of AP2 as a key regulator of PA biosynthesis in Arabidopsis. Overall, this study sheds new light on the comprehensive regulation network of PA biosynthesis as well as the dual regulatory roles of AP2 in seed development and accumulation of major secondary metabolites in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proantocianidinas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Homeodomínio , Proantocianidinas/metabolismo , Sementes/genética
5.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5181-5194, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114108

RESUMO

Artemisia argyi is an important medicinal and economic plant in China, with the effects of warming channels, dispersing cold, and relieving pain, inflammation, and allergy. The essential oil of this plant is rich in volatile terpenoids and widely used in moxi-bustion and healthcare products, with huge market potential. The bZIP transcription factors compose a large family in plants and are involved in the regulation of plant growth and development, stress response, and biosynthesis of secondary metabolites such as terpenoids. However, little is known about the bZIPs and their roles in A. argyi. In this study, the bZIP transcription factors in the genome of A. argyi were systematically identified, and their physicochemical properties, phylogenetic relationship, conserved motifs, and promoter-binding elements were analyzed. Candidate AarbZIP genes involved in terpenoid biosynthesis were screened out. The results showed that a total of 156 AarbZIP transcription factors were identified at the genomic level, with the lengths of 99-618 aa, the molecular weights of 11.7-67.8 kDa, and the theoretical isoelectric points of 4.56-10.16. According to the classification of bZIPs in Arabidopsis thaliana, the 156 AarbZIPs were classified into 12 subfamilies, and the members in the same subfamily had similar conserved motifs. The cis-acting elements of promoters showed that AarbZIP genes were possibly involved in light and hormonal pathways. Five AarbZIP genes that may be involved in the regulation of terpenoid biosynthesis were screened out by homologous alignment and phylogenetic analysis. The qRT-PCR results showed that the expression levels of the five AarbZIP genes varied significantly in different tissues of A. argyi. Specifically, AarbZIP29 and AarbZIP55 were highly expressed in the leaves and AarbZIP81, AarbZIP130, and AarbZIP150 in the flower buds. This study lays a foundation for the functional study of bZIP genes and their regulatory roles in the terpenoid biosynthesis in A. argyi.


Assuntos
Artemisia , Perfilação da Expressão Gênica , Filogenia , Artemisia/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Terpenos , Regulação da Expressão Gênica de Plantas
6.
Nat Commun ; 14(1): 6470, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833361

RESUMO

Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.


Assuntos
Aesculus , Escina , Aesculus/genética , Esculina , Escherichia coli
7.
Hortic Res ; 10(9): uhad164, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731862

RESUMO

Artemisia annua is the only known plant source of the potent antimalarial artemisinin, which occurs as the low- and high-artemisinin producing (LAP and HAP) chemotypes. Nevertheless, the different mechanisms of artemisinin producing between these two chemotypes were still not fully understood. Here, we performed a comprehensive analysis of genome resequencing, metabolome, and transcriptome data to systematically compare the difference in the LAP chemotype JL and HAP chemotype HAN. Metabolites analysis revealed that 72.18% of sesquiterpenes was highly accumulated in HAN compared to JL. Integrated omics analysis found a DBR2-Like (DBR2L) gene may be involved in artemisinin biosynthesis. DBR2L was highly homologous with DBR2, belonged to ORR3 family, and had the DBR2 activity of catalyzing artemisinic aldehyde to dihydroartemisinic aldehyde. Genome resequencing and promoter cloning revealed that complicated variations existed in DBR2L promoters among different varieties of A. annua and were clustered into three variation types. The promoter activity of diverse variant types showed obvious differences. Furthermore, the core region (-625 to 0) of the DBR2L promoter was identified and candidate transcription factors involved in DBR2L regulation were screened. Thus, the result indicates that DBR2L is another key enzyme involved in artemisinin biosynthesis. The promoter variation in DBR2L affects its expression level, and thereby may result in the different yield of artemisinin in varieties of A. annua. It provides a novel insight into the mechanism of artemisinin-producing difference in LAP and HAP chemotypes of A. annua, and will assist in a high yield of artemisinin in A. annua.

8.
Plant Physiol Biochem ; 201: 107795, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301186

RESUMO

Although mainly known for producing artemisinin, Artemisia annua is enriched in phenylpropanoid glucosides (PGs) with significant bioactivities. However, the biosynthesis of A. annua PGs is insufficiently investigated. Different A. annua ecotypes from distinct growing environments accumulate varying amounts of metabolites, including artemisinin and PGs such as scopolin. UDP-glucose:phenylpropanoid glucosyltransferases (UGTs) transfers glucose from UDP-glucose in PG biosynthesis. Here, we found that the low-artemisinin ecotype GS produces a higher amount of scopolin, compared to the high-artemisinin ecotype HN. By combining transcriptome and proteome analyses, we selected 28 candidate AaUGTs from 177 annotated AaUGTs. Using AlphaFold structural prediction and molecular docking, we determined the binding affinities of 16 AaUGTs. Seven of the AaUGTs enzymatically glycosylated phenylpropanoids. AaUGT25 converted scopoletin to scopolin and esculetin to esculin. The lack of accumulation of esculin in the leaf and the high catalytic efficiency of AaUGT25 on esculetin suggest that esculetin is methylated to scopoletin, the precursor of scopolin. We also discovered that AaOMT1, a previously uncharacterized O-methyltransferase, converts esculetin to scopoletin, suggesting an alternative route for producing scopoletin, which contributes to the high-level accumulation of scopolin in A. annua leaves. AaUGT1 and AaUGT25 responded to induction of stress-related phytohormones, implying the involvement of PGs in stress responses.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/metabolismo , Escopoletina/química , Escopoletina/metabolismo , Escopoletina/farmacologia , Esculina/metabolismo , Multiômica , Simulação de Acoplamento Molecular , Artemisininas/metabolismo , Glucosídeos/metabolismo , Glucose/metabolismo , Difosfato de Uridina/metabolismo
9.
J Appl Genet ; 64(2): 231-245, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36633756

RESUMO

Laportea bulbifera, a Miao medicine grown in karst areas, has exerted a unique curative effect on skin itching in the elderly, with an annual sales of > 100 million Yuan. Owing to the shortage of resources and large morphological variations in L. bulbifera, it is difficult to identify the species correctly using only traditional methods, which seriously affects the safety of drug usage for patients. This study obtained the complete high-quality L. bulbifera chloroplast (cp) genome, using second- and third-generation high-throughput sequencing. The cp genome was 149,911 bp in length, with a typical quadripartite structure. A total of 127 genes were annotated, including 83 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. There was an inverted small single copy (SSC) structure in the L. bulbifera cp genome, one large-scale rearrangement of ~ 39 kb excised in the SSC and IR regions. The complete cp genome sequence is used as a potentially effective super-barcode and the highly variable regions (ycf1, matK, and ndhD) can be used as potentially specific barcodes to accurately distinguish L. bulbifera from counterfeits and closely related species. This study is important for the identification of L. bulbifera and lays a theoretical foundation for elucidating the phylogenetic relationship of the species.


Assuntos
Genoma de Cloroplastos , Humanos , Idoso , Filogenia
10.
Genome ; 66(2): 34-50, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516428

RESUMO

Periploca forrestii, a medicinal plant of the family Apocynaceae, is known as an effective and widely used clinical prescription for the treatment of rheumatoid diseases. In this study, we de novo sequenced and assembled the completement chloroplast (cp) genome of P. forrestii based on combined Oxford Nanopore PromethION and Illumina data. The cp genome was 153 724 bp in length and had four subregions. Moreover, an 84 433 bp large single-copy and a 17 731 bp small single-copy were separated by 25 780 bp inverted repeats (IRs). The cp genome included 132 genes with 18 duplicates in the IRs. A total of 45 repeat structures and 183 simple sequence repeats were detected. Codon usage showed a bias toward A/T-ending codons. A comparative study of Apocynaceae revealed that an IR expansion occurred on P. forrestii. The Ka/Ks values of eight species of Apocynaceae suggested that positive selection was exerted on the psaI and ycf2 genes, which might reflect specific adaptions to the P. forrestii particular growth environment. Phylogenetic analysis indicated that Periplocoideae was a sister to Asclepiadoideae, forming a monophyletic group in the family Apocynaceae. This study provided an important P. forrestii genomic resource for future evolutionary studies and the phylogenetic reconstruction of the family Apocynaceae.


Assuntos
Genoma de Cloroplastos , Periploca , Periploca/genética , Filogenia , Genômica , Evolução Molecular
11.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6058-6065, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36471930

RESUMO

Artemisia indica is an important medicinal plant in the Asteraceae family, but its molecular genetic information has been rarely reported. In this study, the chloroplast genome of A. indica was sequenced, assembled, and annotated by the high-throughput sequencing technology, and its sequence characteristics, repeat sequences, codon usage bias, and phylogeny were analyzed. The results showed that the length of the chloroplast genome for A. indica was 151 161 bp, which was a typical circular four-segment structure, including two inverted repeat regions(IRs), a large single-copy(LSC) region, and a small single-copy(SSC) region, with a GC content of 37.47%. A total of 132 genes were annotated, and 114 were obtained after de-duplication, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Fifty long repeat sequences and 191 SSRs were detected in the chloroplast genome of A. indica, and SSRs were mainly single nucleotides. Codon usage bias analysis showed that leucine was the most frequently used amino acid(10.77%) in the chloroplast genome, and there were 30 codons with relative synonymous codon usage(RSCU)>1 and all ended with A/U. The phylogenetic tree constructed based on the chloroplast genomes of the 19 species from the Asteraceae family showed that A. indica and A. argyi were closest in the genetic relationship, and Artemisia species clustered into separate evolutionary branches. The results of this study are expected to provide a theoretical basis for the genetic diversity and resource conservation of Artemisia medicinal plants.


Assuntos
Artemisia , Genoma de Cloroplastos , Plantas Medicinais , Filogenia , Artemisia/genética , Códon/genética , Composição de Bases , Plantas Medicinais/genética
12.
Front Plant Sci ; 13: 1049209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479523

RESUMO

Artemisia Linn. is a large genus within the family Asteraceae that includes several important medicinal plants. Because of their similar morphology and chemical composition, traditional identification methods often fail to distinguish them. Therefore, developing an effective identification method for Artemisia species is an urgent requirement. In this study, we analyzed 15 chloroplast (cp) genomes, including 12 newly sequenced genomes, from 5 Artemisia species. The cp genomes from the five Artemisia species had a typical quadripartite structure and were highly conserved across species. They had varying lengths of 151,132-151,178 bp, and their gene content and codon preferences were similar. Mutation hotspot analysis identified four highly variable regions, which can potentially be used as molecular markers to identify Artemisia species. Phylogenetic analysis showed that the five Artemisia species investigated in this study were sister branches to each other, and individuals of each species formed a monophyletic clade. This study shows that the cp genome can provide distinguishing features to help identify closely related Artemisia species and has the potential to serve as a universal super barcode for plant identification.

13.
Microb Cell Fact ; 21(1): 195, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123741

RESUMO

BACKGROUND: Karst-adapted plant, Lysionotus pauciflours accumulates special secondary metabolites with a wide range of pharmacological effects for surviving in drought and high salty areas, while researchers focused more on their environmental adaptations and evolutions. Nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone), the main active component in L. pauciflours, has unique bioactivity of such as anti-inflammatory, anti-tubercular, and anti-tumor or cancer. Complex decoration of nevadensin, such as hydroxylation and glycosylation of the flavone skeleton determines its diversity and biological activities. The lack of omics data limits the exploration of accumulation mode and biosynthetic pathway. Herein, we integrated transcriptomics, metabolomics, and microbial recombinant protein system to reveal hydroxylation and glycosylation involving nevadensin biosynthesis in L. pauciflours. RESULTS: Up to 275 flavonoids were found to exist in L. pauciflorus by UPLC-MS/MS based on widely targeted metabolome analysis. The special flavone nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone) is enriched in different tissues, as are its related glycosides. The flavonoid biosynthesis pathway was drawn based on differential transcripts analysis, including 9 PAL, 5 C4H, 8 4CL, 6 CHS, 3 CHI, 1 FNSII, and over 20 OMTs. Total 310 LpCYP450s were classified into 9 clans, 36 families, and 35 subfamilies, with 56% being A-type CYP450s by phylogenetic evolutionary analysis. According to the phylogenetic tree with AtUGTs, 187 LpUGTs clustered into 14 evolutionary groups (A-N), with 74% being E, A, D, G, and K groups. Two LpCYP82D members and LpUGT95 were functionally identified in Saccharomyces cerevisiae and Escherichia coli, respectively. CYP82D-8 and CYP82D-1 specially hydroxylate the 6- or 8-position of A ring in vivo and in vitro, dislike the function of F6H or F8H discovered in basil which functioned depending on A-ring substituted methoxy. These results refreshed the starting mode that apigenin can be firstly hydroxylated on A ring in nevadensin biosynthesis. Furthermore, LpUGT95 clustered into the 7-OGT family was verified to catalyze 7-O glucosylation of nevadensin accompanied with weak nevadensin 5-O glucosylation function, firstly revealed glycosylation modification of flavones with completely substituted A-ring. CONCLUSIONS: Metabolomic and full-length transcriptomic association analysis unveiled the accumulation mode and biosynthetic pathway of the secondary metabolites in the karst-adapted plant L. pauciflorus. Moreover, functional identification of two LpCYP82D members and one LpUGT in microbe reconstructed the pathway of nevadensin biosynthesis.


Assuntos
Apigenina , Flavonas , Cromatografia Líquida , Flavonas/metabolismo , Flavonoides , Glicosídeos , Glicosilação , Humanos , Hidroxilação , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
15.
Hortic Res ; 8(1): 229, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719674

RESUMO

As auxins are among the most important phytohormones, the regulation of auxin homeostasis is complex. Generally, auxin conjugates, especially IAA glucosides, are predominant at high auxin levels. Previous research on terminal glucosylation focused mainly on the O-position, while IAA-N-glucoside and IAA-Asp-N-glucoside have been neglected since their discovery in 2001. In our study, IAA-Asp-N-glucoside was found to be specifically abundant (as high as 4.13 mg/g) in the seeds of 58 ginkgo cultivars. Furthermore, a novel N-glucosyltransferase, termed GbNGT1, was identified via differential transcriptome analysis and in vitro enzymatic testing. It was found that GbNGT1 could catalyze IAA-Asp and IAA to form their corresponding N-glucosides. The enzyme was demonstrated to possess a specific catalytic capacity toward the N-position of the IAA-amino acid or IAA from 52 substrates. Docking and site-directed mutagenesis of this enzyme confirmed that the E15G mutant could almost completely abolish its N-glucosylation ability toward IAA-Asp and IAA in vitro and in vivo. The IAA modification of GbNGT1 and GbGH3.5 was verified by transient expression assay in Nicotiana benthamiana. The effect of GbNGT1 on IAA distribution promotes root growth in Arabidopsis thaliana.

16.
Front Plant Sci ; 12: 733505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659300

RESUMO

Artemisinin is currently the most effective ingredient in the treatment of malaria, which is thus of great significance to study the genetic regulation of Artemisia annua. Alternative splicing (AS) is a regulatory process that increases the complexity of transcriptome and proteome. The most common mechanism of alternative splicing (AS) in plant is intron retention (IR). However, little is known about whether the IR isoforms produced by light play roles in regulating biosynthetic pathways. In this work we would explore how the level of AS in A. annua responds to light regulation. We obtained a new dataset of AS by analyzing full-length transcripts using both Illumina- and single molecule real-time (SMRT)-based RNA-seq as well as analyzing AS on various tissues. A total of 5,854 IR isoforms were identified, with IR accounting for the highest proportion (48.48%), affirming that IR is the most common mechanism of AS. We found that the number of up-regulated IR isoforms (1534/1378, blue and red light, respectively) was more than twice that of down-regulated (636/682) after treatment of blue or red light. In the artemisinin biosynthetic pathway, 10 genes produced 16 differentially expressed IR isoforms. This work demonstrated that the differential expression of IR isoforms induced by light has the potential to regulate sesquiterpenoid biosynthesis. This study also provides high accuracy full-length transcripts, which can be a valuable genetic resource for further research of A. annua, including areas of development, breeding, and biosynthesis of active compounds.

17.
J Agric Food Chem ; 69(5): 1714-1726, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33512142

RESUMO

Ginseng contains a variety of flavonol glycosides that possess diverse biological activities; however, scant information of flavonoid glycosylation was reported in ginseng. We found that panasenoside and kaempferol 3-O-glucoside were commonly accumulated along with cultivation years in leaves. In order to explore the procedure of flavonol glycosylation in ginseng, 50 UDP-glycosyltransferases (UGTs) were screened out using differentiated data-independent acquisition (DIA) proteomics and phylogenetic analysis. UGT92A10 and UGT94Q4 were found contributing to the formation of kaempferol 3-O-glucoside. UGT73A18, UGT74T4, and UGT75W1 could catalyze galactosylation of kaempferol 3-O-glucoside. Ser278, Trp335, Gln338, and Val339 were found forming hydrogen bonds with UDP-galactose in UGT75W1 by docking. MeJA induced transcripts of UGT73A18 and UGT74T4 by over fourfold, consistent with the decrease of kaempferol 3-O-glucoside, which indicated that these genes may be related to resisting adversity stress in ginseng. These results highlight the significance of integrative metabolite profiles, proteomics, and phylogenetic analysis for exploring flavonol glycosylation in ginseng.


Assuntos
Flavonoides/biossíntese , Glucosídeos/biossíntese , Glicosiltransferases/metabolismo , Panax/genética , Proteínas de Plantas/metabolismo , Flavonoides/química , Regulação da Expressão Gênica de Plantas , Glucosídeos/química , Glicosilação , Glicosiltransferases/genética , Panax/classificação , Panax/enzimologia , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteômica
18.
Front Plant Sci ; 12: 830343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185970

RESUMO

The seeds of Chinese horse chestnut are used as a source of starch and escin, whereas the potential use of whole plant has been ignored. The astringency and bitterness of tea produced from the leaves and flowers were found to be significantly better than those of green tea, suggesting that the enriched flavonoids maybe sensory determinates. During 47 flavonoids identified in leaves and flowers, seven flavonol glycosides in the top 10 including astragalin and isoquercitrin were significantly higher content in flowers than in leaves. The crude proteins of flowers could catalyze flavonol glucosides' formation, in which three glycosyltransferases contributed to the flavonol glucosylation were screened out by multi-dimensional integration of transcriptome, evolutionary analyses, recombinant enzymatic analysis and molecular docking. The deep exploration for flavonol profile and glycosylation provides theoretical and experimental basis for utilization of flowers and leaves of Aesculus chinensis as additives and dietary supplements.

19.
Food Chem ; 318: 126478, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126466

RESUMO

With people's increasing needs for health concern, rutin and emodin in tartary buckwheat have attracted much attention for their antioxidant, anti-diabetic and reducing weight function. However, the biosynthesis of rutin and emodin in tartary buckwheat is still unclear; especially their later glycosylation contributing to make them more stable and soluble is uncovered. Based on tartary buckwheat' genome, the gene structures of 106 UGTs were analyzed; 21 candidate FtUGTs were selected to enzymatic test by comparing their transcript patterns. Among them, FtUGT73BE5 and other 4 FtUGTs were identified to glucosylate flavonol or emodin in vitro; especially rFtUGT73BE5 could catalyze the glucosylation of all tested flavonoids and emodin. Furthermore, the identical in vivo functions of FtUGT73BE5 were demonstrated in tartary buckwheat hairy roots. The transcript profile of FtUGT73BE5 was consistent with the accumulation trend of rutin in plant; this gene may relate to anti-adversity for its transcripts were up-regulated by MeJA, and repressed by ABA.


Assuntos
Emodina/metabolismo , Fagopyrum/genética , Glucosiltransferases/genética , Rutina/biossíntese , Acetatos/farmacologia , Ciclopentanos/farmacologia , Fagopyrum/efeitos dos fármacos , Fagopyrum/metabolismo , Flavonoides/metabolismo , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Estudo de Associação Genômica Ampla , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Rutina/genética , Rutina/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5577-5588, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496095

RESUMO

Unraveling the genetic basis of medicinal plant metabolism and developmental traits is a long-standing goal for pharmacologists and plant biologists. This paper discusses the definition of molecular genetics of medicinal plants, which is an integrative discipline with medicinal plants as the research object. This discipline focuses on the heredity and variation of medicinal plants, and elucidates the relationship between the key traits of medicinal plants(active compounds, yield, resistance, etc.) and genotype, studies the structure and function, heredity and variation of medicinal plant genes mainly at molecular level, so as to reveal the molecular mechanisms of transmission, expression and regulation of genetic information of medicinal plants. Specifically, we emphasize on three major aspects of this discipline.(1)Individual and population genetics of medicinal plants, this part mainly highlights the genetic mechanism of the domestication, the individual genomics at the species level, and the formation of genetic diversity of medicinal plants.(2)Elucidation of biosynthetic pathways of active compounds and their evolutionary significance. This part summarizes the biosynthesis, diversity and molecular evolution of active compounds in medicinal plants.(3) Molecular mechanisms that shaping the key agronomic traits by internal and external factors. This part focuses on the accumulation and distribution of active compounds within plants and the regulation of metabolic network by environmental factors. Finally, we prospect the future direction of molecular genetics of medicinal plants based on the rapid development of multi-omics technology, as well as the application of molecular genetics in the future strategies to achieve conservation and breeding of medicinal plants and efficient biosynthesis of active compounds.


Assuntos
Plantas Medicinais , Vias Biossintéticas , Genômica , Biologia Molecular , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA