RESUMO
Zanthoxylum avicennae fruits were traditionally used to treat many inflammatory-related diseases, such as icterohepatitis, nephritis and colitis, which inspired us to explore the active chemicals and pharmacological activity. As a result, ten quinoline alkaloids, including six new ones, avicenines A-F (1-6), were isolated and structurally characterized by solid data. Compounds 1, 7 and 8 were identified as three pairs of enantiomers by chiral HPLC separation, of which 1 was an unusual 6/6/5/5-fused quinoline alkaloid bearing a unique cis-hexahydrofuro[3,2-b]furan moiety. The putative biosynthetic pathway for enantiomeric compounds was also proposed. In addition, compound 6 significantly suppressed the gene expression and secretion of pro-inflammatory cytokines IL-1ß and IL-6 in macrophages.
Assuntos
Alcaloides , Quinolinas , Zanthoxylum , Alcaloides/química , Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão , Quinolinas/farmacologia , Zanthoxylum/químicaRESUMO
A chemical investigation on the aerial parts of Euphorbia neriifolia led to the identification of thirteen undescribed diterpenoids, phorneroids A-M, including ent-abietane (A-D), ent-kaurane (E-G), ent-atisane (H-K), and ent-isopimarane (L and M) types, together with three known compounds. Phorneroid A represents the first example of 8-spiro-fused 9,10-seco-ent-abietane diterpenoid lactone featuring a unique 6/5/6/5 spirocyclic framework. Biological assays showed that some of the compounds displayed moderate cytotoxicity against two human tumor cell lines, A549 and HL-60.