Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 130941, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521305

RESUMO

Recent studies revealed that insect chemosensory proteins (CSPs) both play essential roles in insect olfaction and insect resistance. However, functional evidence supporting the crosslink between CSP and insecticide resistance remains unexplored. In the present study, 22 SfruCSP transcripts were identified from the fall armyworm (FAW) and SfruCSP1 and SfruCSP2 are enriched in the larval cuticle and could be induced by multiple insecticides. Both SfruCSP1 and SfruCSP2 are highly expressed in the larval inner endocuticle and outer epicuticle, and these two proteins exhibited high binding affinities with three insecticides (chlorfenapyr, chlorpyrifos and indoxacarb). The knockdown of SfruCSP1 and SfruCSP2 increased the susceptibility of FAW larvae to the above three insecticides, and significantly increased the penetration ratios of these insecticides. Our in vitro and in vivo evidence suggests that SfruCSP1 and SfruCSP2 are insecticide binding proteins and confer FAW larval resistance to chlorfenapyr, chlorpyrifos and indoxacarb by an insecticide sequestration mechanism. The study should aid in the exploration of larval cuticle-enriched CSPs for insect resistance management.


Assuntos
Proteínas de Insetos , Resistência a Inseticidas , Inseticidas , Larva , Oxazinas , Spodoptera , Animais , Spodoptera/efeitos dos fármacos , Spodoptera/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Clorpirifos/farmacologia
2.
Insects ; 13(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354828

RESUMO

Bactrocera dorsalis is a notorious polyphagous pest in China, and its management strategies largely depend on methyl eugenol (ME), which has been widely used as an attractant to monitor and eradicate B. dorsalis populations for seven decades. However, the non-responsiveness levels in field B. dorsalis populations to ME is unknown. In this study, we monitored the response to ME in field populations from the four most heavily infested provinces in China, and the results showed that the populations had lower sensitivity to ME relative to GZS susceptible strain. The percent responsiveness of the lowest sensitivity population was 5.88-, 3.47-, and 1.47-fold lower relative to the susceptible strain at doses of 1, 10, and 100 µL of ME, respectively. Gene expression analysis and inhibitor assays further revealed that odorant binding protein (BdorOBP2, BdorOBP83b) and the P450 enzyme system may be associated with the lower response to ME. To our knowledge, this work is the first to report that the P450 enzyme system confers a lower responsiveness to lure insects. These findings provided valuable insights for exploiting ME non-responsiveness to protect sterile males from ME-based control strategies and the use of lures combined with insecticides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA