Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sci Total Environ ; 931: 172782, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679099

RESUMO

Triclocarban (TCC) and triclosan (TCS) have been detected ubiquitously in human body and evoked increasing concerns. This study aimed to reveal the induction risks of TCC and TCS on triple negative breast cancer through non-genomic GPER-mediated signaling pathways. Molecular simulation indicated that TCC exhibited higher GPER binding affinity than TCS theoretically. Calcium mobilization assay displayed that TCC/TCS activated GPER signaling pathway with the lowest observed effective concentrations (LOEC) of 10 nM/100 nM. TCC and TCS also upregulated MMP-2/9, EGFR, MAPK3 but downregulated MAPK8 via GPER-mediated signaling pathway. Proliferation assay showed that TCC/TCS induced 4 T1 breast cancer cells proliferation with the LOEC of 100 nM/1000 nM. Wound-healing and transwell assays showed that TCC/TCS promoted 4 T1 cells migration in a concentration-dependent manner with the LOEC of 10 nM. The effects of TCC on breast cancer cells proliferation and migration were stronger than TCS and both were regulated by GPER. TCC/TCS induced migratory effects were more significantly than proliferative effect. Mechanism study showed that TCC/TCS downregulated the expression of epithelial marker (E-cadherin) but upregulated mesenchymal markers (snail and N-cadherin), which was reversed by GPER inhibitor G15. These biomarkers results indicated that TCC/TCS-induced 4 T1 cells migration was a classic epithelial to mesenchymal transition mechanism regulated by GPER signaling pathway. Orthotopic tumor model verified that TCC promoted breast cancer in-situ tumor growth and distal tissue metastasis via GPER-mediated signaling pathway at human-exposure level of 10 mg/kg/d. TCC-induced tissue metastasis of breast cancer was more significantly than in-situ tumor growth. Overall, we demonstrated for the first time that TCC/TCS could activate the GPER signaling pathways to induce breast cancer progression.


Assuntos
Neoplasias da Mama , Carbanilidas , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Transdução de Sinais , Triclosan , Carbanilidas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Triclosan/toxicidade , Humanos , Feminino , Neoplasias da Mama/patologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Animais , Movimento Celular/efeitos dos fármacos
2.
Cell Death Dis ; 15(4): 271, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632264

RESUMO

Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Exossomos , Células-Tronco Mesenquimais , Humanos , Exossomos/metabolismo , Complicações do Diabetes/metabolismo , Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Resultado do Tratamento , Diabetes Mellitus/metabolismo
3.
Environ Pollut ; 342: 123030, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030110

RESUMO

Previous epidemiological and animal studies have showed the lipid metabolic disruption of antimicrobial triclocarban (TCC) and triclosan (TCS). However, the present in vivo researches were mainly devoted to the hepatic lipid metabolism, while the evidence about the impacts of TCC/TCS on the adipose tissue is very limited and the potential mechanism is unclear, especially the molecular initiation events. Moreover, little is known about the toxic difference between TCC and TCS. This study aimed to demonstrate the differential adipogenic activity of TCC/TCS as well as the potential molecular mechanism via peroxisome proliferator-activated receptors (PPARα/ß/γ). The in vitro experiment based on 3T3-L1 cells showed that TCC/TCS promoted the differentiation of preadipocytes into mature adipocytes at nanomolar to micromolar concentrations, which was approach to their human exposure levels. We revealed for the first time by reporter gene assay that TCC could activate three PPARs signaling pathways in a concentration-dependent manner, while TCS only activate PPARß. The molecular docking strategy was applied to simulate the interactions of TCC/TCS with PPARs, which explained well the different PPARs activities between TCC and TCS. TCC up-regulated the mRNA expression of three PPARs, but TCS only up-regulated PPARß and PPARγ significantly. Meanwhile, TCC/TCS also promoted the expression of adipogenic genes targeted by PPARs to different extent. The cellular and simulating studies demonstrated that TCC exerted higher adipogenic effects and PPARs activities than TCS. Our mice in vivo experiment showed that TCC could lead to adipocyte size increase, adipocyte lipid accumulation growing, fat weight and body weight gain at human-related exposure levels, and high fat diet exacerbated these effects. Moreover, male mice tended to be more susceptible to TCC induced obesogenic effect than female mice. This work highlights the potential obesogenic risks of TCC/TCS via PPARs signaling pathways, and TCC deserves more concerns for its higher activity.


Assuntos
Carbanilidas , PPAR beta , Triclosan , Masculino , Feminino , Humanos , Animais , Camundongos , Triclosan/toxicidade , Simulação de Acoplamento Molecular , Carbanilidas/toxicidade , Lipídeos
4.
Sci Total Environ ; 858(Pt 3): 160079, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372182

RESUMO

Triclosan (TCS) and triclocarban (TCC) have become ubiquitous pollutants detected in human body with concentrations up to hundreds of nanomolar levels. Previous studies about the hepatic lipid accumulation induced by TCS and TCC were focused on pollutant itself, which showed weak or no effects. High-fat diet (HFD), as a known environmental factor contributing to lipid metabolism-related disorders, its synergistic action with environmental pollutants deserves concern. The present study aimed to demonstrate the combined effects and potential molecular mechanisms of TCS and TCC with HFD at cellular and animal levels. The in vitro studies showed that TCC and TCS alone had negligible impact on lipid accumulation in HepG2 cells but induced lipid deposition at nanomolar levels when co-exposure with fatty acid. TCC exhibited much higher induction effects than TCS, which was related to their differential regulatory roles in adipogenic-related genes expression. The in vivo studies showed that TCC had little influence on hepatic lipid accumulation in mice fed with normal diet (ND) but could exacerbate the lipid accumulation in mice fed with HFD. Meanwhile, TCC-induced dyslipidemia in mice fed with HFD was more significant than that fed with ND. Therefore, we speculated that TCC might increase the risk of nonalcoholic fatty liver disease (NAFLD) and atherosclerosis in HFD humans. Molecular mechanism studies showed that TCC and TCS could bind to and activate estrogen-related receptor α (ERRα) and ERRγ as well as regulate their expression. TCC had higher activity on ERRα and ERRγ than TCS, which explained partly the differential regulatory roles of two receptors in the lipid accumulation induced by TCC and TCS. This work revealed synergistic effects and molecular mechanisms of TCC and TCS with excessive fatty acid on the hepatic lipid metabolism, which provided a novel insight into the toxic mechanism of pollutants from the perspective of dietary habits.


Assuntos
Dieta Hiperlipídica , Triclosan , Humanos , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Triclosan/toxicidade , Ácidos Graxos , Estrogênios , Lipídeos
5.
J Sci Food Agric ; 103(2): 750-763, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36054758

RESUMO

BACKGROUND: N-Carbamoyl-aspartic acid (NCA) is a critical precursor for de novo biosynthesis of pyrimidine nucleotides. To investigate the cumulative effects of maternal supplementation with NCA on the productive performance, serum metabolites and intestinal microbiota of sows, 40 pregnant sows (∼day 80) were assigned into two groups: (1) the control (CON) and (2) treatment (NCA, 50 g t-1 NCA). RESULTS: Results showed that piglets from the NCA group had heavier birth weight than those in the CON group (P < 0.05). In addition, maternal supplementation with NCA decreased the backfat loss of sows during lactation (P < 0.05). Furthermore,16S-rRNA sequencing results revealed that maternal NCA supplementation decreased the abundance of Cellulosilyticum, Fournierella, Anaerovibrio, and Oribacterium genera of sows during late pregnancy (P < 0.05). Similarly, on the 14th day of lactation, maternal supplementation with NCA reduced the diversity of fecal microbes of sows as evidenced by significantly lower observed species, Chao1, and Ace indexes, and decreased the abundance of Lachnospire, Faecalibacterium, and Anaerovorax genera, while enriched the abundance of Catenisphaera (P < 0.05). Untargeted metabolomics showed that a total of 48 differentially abundant biomarkers were identified, which were mainly involved in metabolic pathways of arginine/proline metabolism, phenylalanine/tyrosine metabolism, and fatty acid biosynthesis, etc. CONCLUSION: Overall, the results indicated that NCA supplementation regulated intestinal microbial composition of sows and serum differential metabolites related to arginine, proline, phenylalanine, tyrosine, and fatty acids metabolism that may contribute to regulating the backfat loss of sows, and the birth weight and diarrhea rate of piglets. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Suínos , Animais , Gravidez , Feminino , Ração Animal/análise , Colostro/química , Ácido Aspártico/análise , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Suplementos Nutricionais/análise , Peso ao Nascer , Dieta/veterinária , Lactação , Arginina/análise , Fenilalanina/análise , Tirosina/análise , Prolina/análise
6.
Front Nutr ; 9: 1018349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337658

RESUMO

Background: As an important nucleoside precursor in salvage synthesis pathway of uridine monophosphate, uridine (UR) is the most abundant nucleotide in sow milk. This study aimed to investigate the effects of maternal UR supplementation during second trimester of gestation on reproductive performance and amino acid metabolism of Sows. Results: Results showed that compared to CON group, the average number of stillborn piglets per litter was significantly reduced (P < 0.05) with higher average piglet weight at birth in UR group (P = 0.083). Besides, dietary UR supplementation significantly increased TP in sow serum, BUN content in cord serum, and TP and ALB in newborn piglet serum (P < 0.05); but decreased AST level in sow serum and BUN level in piglet serum (P < 0.05). Importantly, free amino acids profile in sow serum newborn piglet serum and colostrum was changed by maternal UR supplementation during day 60 of pregnancy, as well as the expression of amino acids transporter (P < 0.05). In addition, from 100 to 2,000 µM UR can increased the viability of pTr2 cells. The UR exhibited higher distribution of G1/M phase of cell cycle at 400 µM compared with 0 µM, and reduced S-phases of cell cycle compared with 0 and 100µM (P < 0.05). Conclusion: Supplementation of uridine during day 60 of pregnancy can improve reproductive performance, regulate amino acid metabolism of sows and their offspring, and increase the viability of pTr2 cells.

7.
Environ Int ; 170: 107568, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36240625

RESUMO

Neonicotinoid insecticides (NIs) have been widely detected in environmental media and human body with concentrations reaching hundreds of nanomolar to micromolar levels. However, the information about their human health toxicology and mechanism is deficient. Previous studies have implied that NIs might exert estrogenic disruption and promote breast cancer progression, but the molecular mechanism is unclear, especially the molecular initiating event. G protein-coupled estrogen receptor (GPER), as a candidate therapeutic target, plays vital roles in the development of breast cancer. This work aimed to reveal the potential mechanism through GPER pathway. Firstly, we screened the activities of seven most common NIs on GPER signal pathway by calcium mobilization assay. Clothianidin, acetamiprid (ACE), and dinotefuran activated GPER most potently and ACE displayed the highest agonistic activity with the lowest observed effective concentration (LOEC) of 1 µM. The molecular docking and dynamics simulation showed favored interaction trend between the NIs and GPER. The three NIs with GPER activity induced 4T1 breast cancer cells migration and ACE showed the highest potency with LOEC of 100 nM. ACE also induced 4T1 cells proliferation at high concentration of 50 µM and up-regulated GPER expression in a dose-dependent manner. We speculated that both the induction effects of ACE on 4T1 cells proliferation and migration might be owing to the activation and up-regulation of GPER. By using 4T1-Luc cells injected orthotopic tumor model, we found that ACE also promoted in-situ breast cancer growth and lung metastasis in normal mouse dependent on GPER. However, ACE only promoted in-situ breast cancer growth through GPER but not lung metastasis in ovariectomized mice, implying that the ACE-induced lung metastasis should be related to endogenous estrogen from ovary. Overall, we demonstrated that NIs promoted breast cancer progression via GPER pathway at human related exposure levels and their female health risks need urgent concerns.


Assuntos
Neoplasias , Receptores de Estrogênio , Humanos , Feminino , Camundongos , Animais , Simulação de Acoplamento Molecular , Estrogênios , Proteínas de Ligação ao GTP
8.
Environ Sci Technol ; 56(4): 2466-2475, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099937

RESUMO

Benzotriazole ultraviolet stabilizers (BUVSs) are ubiquitous emerging pollutants that have been reported to show estrogenic disruption effects through interaction with the classic estrogen receptors (ERs) in the fashion of low activity. The present study aims at revealing the potential disruption mechanism via estrogen-related receptors α and γ (ERRα and ERRγ) pathways. By the competitive binding assay, we first found that BUVSs bond to ERRγ ligand binding domain (ERRγ-LBD) with Kd ranging from 0.66 to 19.27 µM. According to the results of reporter gene assays, the transcriptional activities of ERRα and ERRγ were promoted by most tested BUVSs with the lowest observed effective concentrations (LOEC) from 10 to 100 nM, which are in the range of human exposure levels. At 1 µM, most tested BUVSs showed higher agonistic activity toward ERRγ than ERRα. The most effective two BUVSs promoted the MCF-7 proliferation dependent on ERRα and ERRγ with a LOEC of 100 nM. The molecular dynamics simulation showed that most studied BUVSs had lower binding free energy with ERRγ than with ERRα. The structure-activity relationship analysis revealed that molecular polarizability, electron-donating ability, ionization potential, and softness were the main structural factors impacting the binding of BUVSs with ERRγ. Overall, our results provide novel insights into the estrogenic disruption effects of BUVSs.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Proliferação de Células , Estrogênios , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Triazóis , Receptor ERRalfa Relacionado ao Estrogênio
9.
Vet Med Sci ; 7(4): 1347-1358, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33620158

RESUMO

The purpose of this study was to investigate the effects of adding Pennisetum purpureum (P. purpureum, also known as Napier grass or elephant grass) to the diets of late gestation on the antioxidant indexes, immune indexes and faecal microbiota of sows. At the 90 days of gestation, 300 healthy sows were randomly divided into three groups, and they received the basic commercial diet or added 5% P. purpureum and 10% P. purpureum, respectively. The experiment started from 90 days of gestation to parturition. The results showed that the total antioxidant capacity, immunoglobulins and serum equol concentrations of sows on 100 days of gestation and at parturition increased linearly (p < .05) with the increase of the content of P. purpureum in the gestation diet. The 5% P. purpureum increased the relative abundance of Bacteroidetes (p = .027) and Actinobacteria (p < .001) at phylum level, Coriobacteriaceae (p < .001) at family level and Prevotellaceae_UCG_001 (p = .004) at genus level, and decreased the relative abundance of Escherichia_Shigella (p < .001) at genus level. In summary, this study shows that the additive of P. purpureum can increase the concentration of serum equol, improve the antioxidant capacity and immune function of sow in late gestation. In addition, the additive of 5% P. purpureum in the diet might change the composition of intestinal microbiota of sows, particularly the relative abundance of Coriobacteriaceae (p < .001) increased.


Assuntos
Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Fezes/microbiologia , Imunidade Inata , Microbiota , Pennisetum/química , Prenhez/fisiologia , Sus scrofa/imunologia , Ração Animal/análise , Animais , Dieta/veterinária , Feminino , Imunidade Inata/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Gravidez , Prenhez/efeitos dos fármacos
10.
Br J Nutr ; 125(7): 743-756, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792039

RESUMO

To investigate the cumulative effects of maternal supplementation with nucleotides in the form of uridine (UR) on fatty acid and amino acid constituents of neonatal piglets, fifty-two sows in late gestation were assigned randomly into the control (CON) group (fed a basal diet) or UR group (fed a basal diet with 150 g/t UR). Samples of neonates were collected during farrowing. Results showed that supplementing with UR in sows' diet significantly decreased the birth mortality of pigs (P = 0·05), and increased serum total cholesterol, HDL and LDL of neonatal piglets (P < 0·05). Moreover, the amino acid profile of serum and liver of neonatal piglets was affected by the addition of UR in sows' diets (P < 0·05). Furthermore, an up-regulation of mRNA expression of energy metabolism-related genes, including fatty acid elongase 5, fatty acid desaturase 1, hormone-sensitive lipase and cholesterol-7a-hydroxylase, was observed in the liver of neonates from the UR group. Additionally, a decrease in placental gene expression of excitatory amino acid transporters 2, excitatory amino acid transporter 3 and neutral AA transporter 1 in the UR group was concurrently observed (P < 0·05), and higher protein expression of phosphorylated protein kinase B, raptor, PPARα and PPARγ in placenta from the UR group was also observed (P < 0·05). Together, these results showed that maternal UR supplementation could regulate placental nutrient transport, largely in response to an alteration of mTORC1-PPAR signalling, thus regulating the nutrition metabolism of neonatal piglets and improving reproductive performance.

11.
J Sci Food Agric ; 101(10): 4018-4032, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349941

RESUMO

BACKGROUND: As an enzymatic product of yeast, yeast-based nucleotide (YN) is rich in nucleotides. To test the effects of maternal dietary supplementation with YN during late pregnancy on placental nutrient transport and nutrient metabolism in neonatal piglets, 64 pregnant sows (day 85 ± 3) were assigned into two groups: (i) control (CON) and (ii) treatment (YN; 4 g kg-1 ). Blood, placenta and liver samples of neonates during delivery were collected. RESULTS: The results showed that maternal YN supplementation decreased stillbirth rate and intra-uterine growth restriction rate (P < 0.05). In addition, maternal YN supplementation increased total serum protein, albumin and total cholesterol (P < 0.05). Furthermore, in neonatal piglets in the YN group, both serum amino acidand nucleotide profiles were affected, as well as liver amino acid, and fatty acid profiles were regulated (P < 0.05). Moreover, maternal YN supplementation increased liver mRNA expression of SLC28A3, SLC29A1, SLC29A2, PC, PCK1, FBP1, SREBP1c, HSL and CYP7a1 of neonatal piglets (P < 0.05). Meanwhile, there was a decrease in placental gene expression of EAAT2, EAAT3, LAT1 and PAT1, as well as lower protein expression of peroxisome proliferator-activated receptor (PPAR)γ, AKT, phosphorylated-AKT, phosphorylated-mammalian target of rapamycin (mTOR) and Raptor, in the YN group (P < 0.05). CONCLUSION: Taken together, these results indicate that maternal YN supplementation regulates placental nutrient transport by regulating the mTOR complex 1-PPAR pathway, and affects the liver metabolism of nucleotides, amino acids and fatty acids in neonatal piglets, thereby improving the reproductive performance of sow to a certain extent. © 2020 Society of Chemical Industry.


Assuntos
Nucleotídeos/metabolismo , Gravidez/metabolismo , Saccharomyces cerevisiae/química , Natimorto/veterinária , Suínos/metabolismo , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Suplementos Nutricionais/análise , Ácidos Graxos/metabolismo , Feminino , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Placenta/metabolismo , Reprodução , Saccharomyces cerevisiae/metabolismo , Suínos/genética , Suínos/crescimento & desenvolvimento
12.
Oxid Med Cell Longev ; 2020: 1241894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802257

RESUMO

There is a bidirectional relationship between inflammatory bowel disease (IBD) and depression/anxiety. Emerging evidences indicate that the liver may be involved in microbiota-gut-brain axis. This experiment focused on the role of melatonin in regulating the gut microbiota and explores its mechanism on dextran sulphate sodium- (DSS-) induced neuroinflammation and liver injury. Long-term DSS-treatment increased lipopolysaccharide (LPS), proinflammation cytokines IL-1ß and TNF-α, and gut leak in rats, breaking blood-brain barrier and overactivated astrocytes and microglia. Ultimately, the rats showed depression-like behavior, including reduction of sucrose preference and central time in open field test and elevation of immobility time in a forced swimming test. Oral administration with melatonin alleviated neuroinflammation and depression-like behaviors. However, melatonin supplementation did not decrease the level of LPS but increase short-chain fatty acid (SCFA) production to protect DSS-induced neuroinflammation. Additionally, western blotting analysis suggested that signaling pathways farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF 15) in gut and apoptosis signal-regulating kinase 1 (ASK1) in the liver overactivated in DSS-treated rats, indicating liver metabolic disorder. Supplementation with melatonin markedly inhibited the activation of these two signaling pathways and its downstream p38. As for the gut microbiota, we found that immune response- and SCFA production-related microbiota, like Lactobacillus and Clostridium significantly increased, while bile salt hydrolase activity-related microbiota, like Streptococcus and Enterococcus, significantly decreased after melatonin supplementation. These altered microbiota were consistent with the alleviation of neuroinflammation and metabolic disorder. Taken together, our findings suggest melatonin contributes to reshape gut microbiota and improves inflammatory processes in the hippocampus (HPC) and metabolic disorders in the liver of DSS rats.


Assuntos
Depressores do Sistema Nervoso Central/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Inflamação/tratamento farmacológico , Melatonina/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Animais , Depressores do Sistema Nervoso Central/farmacologia , Masculino , Melatonina/farmacologia , Ratos
13.
Front Physiol ; 11: 79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116786

RESUMO

Oligopeptide transporter 1 (Pept1) is located on the brush border membrane of the intestinal epithelium and plays an important role in dipeptide and tripeptide absorption from protein digestion. In this study, we cloned and characterized the cDNA sequence of Janus kinase 2 (JAK2) from Ctenopharyngodon idella. The expression patterns of JAK2 in various tissues and developmental stages were characterized by quantitative real-time PCR (qRT-PCR). The mRNA expression levels of JAK2 and Pept1 regulated by leptin in the intestine were also analyzed in vitro and in vivo. The cDNA sequence of JAK2 is 3378 bp in length, and the mRNA of JAK2 was broadly expressed in all tissues and embryonic stages of C. idella analyzed. In addition, we found that leptin regulated expression of JAK2 and Pept1 in the intestine; Pept1 expression was down-regulated by the JAK2 inhibitor AG490 in vivo and in vitro. Furthermore, luciferase experiments showed that overexpression of the JAK2 gene significantly upregulated the activity of the Pept1 5' regulatory sequence in C. idella. In conclusion, these results may help in elucidating the regulatory effect of the leptin-mediated JAK2 pathway on intestinal Pept1 expression in C. idella and the molecular mechanism of peptide transport by the intestinal transporter Pept1 in fishes.

14.
Metabolism ; 102: 154011, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734274

RESUMO

OBJECTIVE: The gut microbiota regulates thermogenesis to benefit metabolic homeostasis at least partially via its metabolite butyrate, and the underlying mechanisms of this regulation are still unclear. In this study, we aim to investigate the role of lysine specific demethylase (LSD1), a histone demethylase and important regulator of thermogenesis, in mediating gut microbial metabolite butyrate regulation of thermogenesis. METHODS: The antibiotic cocktail (ABX) was administrated to deplete gut microbiota. Adipose-specific LSD1 knockout mice (LSD1 aKO) were generated by crossing LSD1-lox/lox with adiponectin-cre mice and sodium butyrate and dietary fiber inulin was administrated through oral-gavage. Primary stromal vascular cells were isolated from adipose tissues and differentiated to adipocytes for studying butyrate effects on adipocyte thermogenesis. RESULTS: The antibiotic cocktail (ABX)-mediated depletion of the gut microbiota in mice downregulated the expression of LSD1 in both brown adipose tissue (BAT) and subcutaneous white adipose tissue (scWAT) in addition to uncoupling protein 1 (UCP1) and body temperature. Gavage of the microbial metabolite butyrate in ABX-treated mice reversed the thermogenic functional impairment and LSD1 expression. The adipose-specific ablation of LSD1 in mice attenuated the butyrate-mediated induction of thermogenesis and energy expenditure. Notably, our results showed that butyrate directly increased the expression of LSD1 and UCP1 as well as butyrate transporter monocarboxylate transporter 1 (MCT1) and catabolic enzyme acyl-CoA medium-chain synthetase 3 (ACSM3) in ex vivo cultured adipocytes. The inhibition of MCT1 blocked the effects of butyrate in adipocytes. Furthermore, the butyrate-mediated prevention of diet-induced obesity (DIO) through increased thermogenesis was attenuated in LSD1 aKO mice. Moreover, after gavaging HFD-fed mice with the dietary fiber inulin, a substrate of microbial fermentation that rapidly produces butyrate, thermogenesis in both BAT and scWAT was increased, and DIO was decreased; however, these beneficial metabolic effects were blocked in LSD1 aKO mice. CONCLUSIONS: Together, our results indicate that the microbial metabolite butyrate regulates thermogenesis in BAT and scWAT through the activation of LSD1.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Butiratos/farmacologia , Microbioma Gastrointestinal/fisiologia , Histona Desmetilases/fisiologia , Termogênese/efeitos dos fármacos , Termogênese/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Butiratos/metabolismo , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gordura Subcutânea/metabolismo
15.
Br J Nutr ; 123(5): 481-488, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31623699

RESUMO

The present study was conducted to evaluate the effects of glucose, soya oil or glutamine on jejunal morphology, protein metabolism and protein expression of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway in jejunal villus or crypt compartment of piglets. Forty-two 21 d-weaned piglets were randomly allotted to one of the three isoenergetic diets formulated with glucose, soya oil or glutamine for 28 d. On day 14 or 28, the proteins in crypt enterocytes were analysed with isobaric tags for relative and absolute quantification and proteins involved in mTORC1 signalling pathway in villus or crypt compartment cells were determined by Western blotting. Our results showed no significant differences (P > 0·05) in jejunal morphology among the three treatments on day 14 or 28. The differentially expressed proteins mainly took part in a few network pathways, including antimicrobial or inflammatory response, cell death and survival, digestive system development and function and carbohydrate metabolism. On day 14 or 28, there were higher protein expression of eukaryotic initiation factor-4E binding protein-1 in jejunal crypt compartment of piglets supplemented with glucose or glutamine compared with soya oil. On day 28, higher protein expression of phosphor-mTOR in crypt compartment was observed in piglets supplemented with glucose compared with the soya oil. In conclusion, the isoenergetic glucose, soya oil or glutamine did not affect the jejunal morphology of piglets; however, they had different effects on the protein metabolism in crypt compartment. Compared with soya oil, glucose or glutamine may be better energy supplies for enterocytes in jejunal crypt compartment.


Assuntos
Suplementos Nutricionais , Glucose/farmacologia , Glutamina/farmacologia , Óleo de Soja/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Enterócitos/metabolismo , Jejuno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Desmame
16.
Anim Sci J ; 90(9): 1239-1247, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31281994

RESUMO

This study was conducted to investigate the effects of different levels of dietary partial MEs and coated cysteamine (CC) supplementation on gut microbiota in finishing pigs. Results showed that whittling down dietary partial MEs (Cu, Fe, Zn, Mn) by 20% and 40% had little effect on the microbial diversity, community structure, and bacterial relative abundance in the ileum of finishing pigs. Supplementation with 1,600 mg/kg CC also had no obvious effect on the microbial diversity, community structure, and bacterial relative abundance in the finishing pig ileum when fed diets with a normal MEs level. However, the abundance of Peptostreptococcaceae, Pasteurella, and Pasteurella_aerogenes was higher, and the abundance of Actinobacillus_minor was lower in the 20% ME reduction diet treatment than that in the 20% ME reduction with 1,600 mg/kg CC diet group (p < 0.05). In conclusion, our results suggested that there is no obvious effect on gut microbiota when dietary partial MEs are reduced by 20% or 40%, which indicates the feasibility of reducing dietary partial MEs by 20% or 40% in finishing pigs. Supplementation with CC changed the relative abundance of some bacteria related to opportunistic pathogenicity in the finishing pig ileum when were fed a 20% ME reduction diet.


Assuntos
Cisteamina/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/microbiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Minerais , Suínos
17.
Drug Discov Today ; 24(9): 1784-1794, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31212027

RESUMO

Until recently, major advances in drug development have been hampered by a lack of proper cell and tissue models; but the introduction of organoid technology has revolutionized this field. At the level of the gastrointestinal tract, the so-called mini-gut comprises all major cell types of native intestine and recapitulates the composition and function of native intestinal epithelium. The mini-gut can be classified as an intestinal organoid (IO), derived from pluripotent stem cells, or as an enteroid, consisting only of epithelial cells and generated from adult stem cells. Both classifications have been used as models to develop drugs against cystic fibrosis, cancer and infectious disease, as well as for drug screening, personalized medicine and the development of new medical tools. In this review, we highlight and discuss the importance of mini-guts for drug development and point out their limitations and future prospects.


Assuntos
Desenvolvimento de Medicamentos/métodos , Intestinos/fisiologia , Organoides/citologia , Organoides/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Humanos , Técnicas In Vitro , Modelos Biológicos , Células-Tronco Pluripotentes/fisiologia
18.
Animals (Basel) ; 9(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159180

RESUMO

The amino acids and other components of diet provide nourishment for piglet intestinal development and maturation. However, early-weaned piglets struggle with tremendous stress, impairing normal intestinal health and leading to intestinal dysfunction and even death. The high prevalence worldwide of post-weaning diarrhoea syndrome (PWDS) in piglets has led to much interest in understanding the important role of nutrients in the establishment and maintenance of a functional intestinal tract. In particular, the impacts of amino acids on these functions must be considered. Amino acid levels greatly influence intestinal development in weaning piglets. The lack of amino acids can cause marked structural and functional changes in the intestine. Therefore, a comprehensive understanding of the functions of amino acids is necessary to optimize amino acid requirements of the developing intestinal tract to maximize piglet health and growth performance. This review summarizes the role of specific amino acids (arginine, glutamate, threonine, sulphur-containing amino acids (SCAAs), and branched-chain amino acids (BCAAs)) that have been proven to be beneficial for the intestinal health of weaned piglets.

19.
Mol Nutr Food Res ; 63(16): e1801143, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30883003

RESUMO

Nutritional studies are greatly hampered by a paucity of proper models. Previous studies on nutrition have employed conventional cell lines and animal models to gain a better understanding of the field. These models lack certain correlations with human physiological responses, which impede their applications in this field. Enteroids are cultured from intestinal stem cells and include enterocytes, enteroendocrine cells, goblet cells, Paneth cells, and stem cells, which mimic hallmarks of in vivo epithelium and support long-term culture without genetic or physiological changes. Enteroids have been used as models to study the effects of diet and nutrients on intestinal growth and development, ion and nutrient transport, secretory and absorption functions, the intestinal barrier, and location-specific functions of the intestine. In this review, the existing models for nutritional studies are discussed and the importance of enteroids as a new model for nutritional studies is highlighted. Taken together, it is suggested that enteroids can serve as a potential model system to be exploited in nutritional studies.


Assuntos
Dieta , Intestinos/citologia , Nutrientes/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Linhagem Celular , Enterócitos/efeitos dos fármacos , Células Enteroendócrinas/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Humanos , Modelos Animais , Nutrientes/metabolismo , Permeabilidade
20.
J Agric Food Chem ; 67(9): 2421-2428, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739438

RESUMO

The lack of sophisticated in vitro models limits our current understanding of gastrointestinal functions in farm animals. Conventional 2D cell lines or primary cells fail to recapitulate the physiology of in vivo intestinal epithelium. In contrast stem cell-derived, nontransformed 3D enteroids partially recreate the villus-crypt anatomy of the native intestine and comprise most if not all intestinal cell types including enterocytes, enteroendocrine cells, goblet cells, Paneth cells, and stem cells. This review summarizes the techniques used for generating and culturing enteroids of various farm animal species, focuses on important factors influencing the longevity of enteroids, and provides an overview of their current applications in modeling veterinary pathogens and in developing chemicals and bioactives for treating animal disease and improving production performance. It also mentions current limitations of enteroid models and potential solutions and highlights the opportunities for using these enteroids as a platform in studies regarding veterinary sciences and animal nutrition.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Animais Domésticos/fisiologia , Intestinos/citologia , Intestinos/fisiologia , Células-Tronco/fisiologia , Animais , Bovinos , Técnicas de Cultura de Células/veterinária , Sobrevivência Celular , Galinhas , Células Epiteliais/fisiologia , Humanos , Modelos Biológicos , Ovinos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA