Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890768

RESUMO

In modern society, technology associated with smart sensors made from flexible materials is rapidly evolving. As a core component in the field of wearable smart devices (or 'smart wearables'), flexible sensors have the advantages of excellent flexibility, ductility, free folding properties, and more. When choosing materials for the development of sensors, reduced weight, elasticity, and wearer's convenience are considered as advantages, and are suitable for electronic skin, monitoring of health-related issues, biomedicine, human-computer interactions, and other fields of biotechnology. The idea behind wearable sensory devices is to enable their easy integration into everyday life. This review discusses the concepts of sensory mechanism, detected object, and contact form of flexible sensors, and expounds the preparation materials and their applicability. This is with the purpose of providing a reference for the further development of flexible sensors suitable for wearable devices.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos
2.
Nanomaterials (Basel) ; 9(8)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405136

RESUMO

Evaluating the mechanical ability of nanofibrous membranes during processing and end uses in tissue engineering is important. We propose a geometric model to predict the uniaxial behavior of randomly oriented nanofibrous membrane based on the structural characteristics and tensile properties of single nanofibers. Five types of silk fibroin (SF)/poly(ε-caprolactone) (PCL) nanofibers were prepared with different mixture ratios via an electrospinning process. Stress-strain responses of single nanofibers and nanofibrous membranes were tested. We confirmed that PCL improves the flexibility and ductility of SF/PCL composite membranes. The applicability of the analytical model was verified by comparison between modeling prediction and experimental data. Experimental stress was a little lower than the modeling results because the membranes were not ideally uniform, the nanofibers were not ideally straight, and some nanofibers in the membranes were not effectively loaded.

3.
Nanomaterials (Basel) ; 8(5)2018 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-29783766

RESUMO

Due to the non-uniform material properties of electrospun nanofibrous mats and the non-linear characteristics of single fibers, establishing a numerical model that can fully explain these features and correctly describe their properties is difficult. Based on the microstructure of electrospun nanofibrous mats, two macroscopic continuum finite element (FE) models with a uniform or oriented nanofiber distribution were established to describe the mechanical behavior of nanofibrous mats under biaxial tension. The FE models were verified by biaxial tension experiments on silk fibroin/polycaprolactone nanofibrous mats. The developed FE models expressed the mechanical behaviors of the mats under biaxial tension well. These models can help clarify the structure⁻property relationship of electrospun nanofibrous mats and guide the design of materials for engineering applications.

4.
Nanomaterials (Basel) ; 8(1)2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316684

RESUMO

It is difficult to establish a numerical model for a certain structure of electrospun nanofibrous mats, due to their high porosity and non-linear characteristics, that can fully consider these characteristics and describe their mechanical behaviors. In this paper, an analytical method of meso-mechanics was adopted to establish the tensile constitutive relationship between a single fiber and mats from fiber-web microstructures. Meanwhile, a macroscopic finite element model was developed and verified through uniaxial tensile stress-strain experimental data of silk fibroin (SF)/polycaprolactone (PCL) nanofibrous mats. The compared results show that the constitutive relation and finite element model could satisfactorily express elastic-plastic tensile mechanical behaviors of the polymer. This model helps regulate the microstructure of nanofibrous mats to meet the mechanical requirements in engineering applications.

5.
Membranes (Basel) ; 7(4)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215601

RESUMO

The mechanical properties of electrospun nanofiber membranes are critical for their applications. A clear understanding of the mechanical properties that result from the characteristics of the individual fiber and membrane microstructure is vital in the design of fiber composites. In this reported study, silk fibroin (SF)/polycaprolactone (PCL) composite nanofiber membranes were preparedusing an electrostatic spinning technology. The nanofiber orientation distribution (FOD) of the membrane was analyzed using multi-layer image fusion technology, and the results indicated the presence of an approximately uniform distribution of fibers in the electrospun membranes. The relationship between the single nanofiber and the membrane was established by analyzing the geometrical structure of the cell by employing a representative volume element (RVE) analysis method. The mechanical properties of the 272 nm diameter SF/PCL composite fibers were then predicted using the developed model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA