RESUMO
Two POM@MOF hybrid materials composed of a copper-based metal-organic framework (MOF) [Cu3(C9H3O6)2(H2O)3]n (HKUST-1) encapsulating vanadium-substituted Keggin polyoxometalates (POM), [α-PVW11O40]4- (PVW11) and [α-PV2W10O40]5- (PV2W10), were prepared and characterized. PVW11@HKUST-1 and PV2W10@HKUST-1 were synthesized hydrothermally by self-assembly of HKUST-1 in the presence of the preformed POMs, [α-PVW11O40]4- and [α-PV2W10O40]5-, respectively. The two POM@MOF composites were characterized by X-ray diffraction, TGA, BET surface area analysis and FT-IR and Raman spectroscopy. The electronic structure of the POM@MOF materials and their respective constituents is surveyed using solid state UV-vis reflectance spectroscopy. The UV-vis spectra order the oxidizing strength of the POM constituents ([α-PV2W10O40]5- > [α-PVW11O40]4-) and reveal the distinct electronic structure of the POM@MOF materials obtained by synthetic encapsulation of mono- and di-vanadium substituted Keggin polyoxotungstates in HKUST-1.
RESUMO
Phononic crystals, which are artificial crystals formed by the periodic arrangement of materials with different elastic coefficients in space, can display modulated sound waves propagating within them. Similar to the natural crystals used in semiconductor research with electronic bandgaps, phononic crystals exhibit the characteristics of phononic bandgaps. A gap design can be utilized to create various resonant cavities, confining specific resonance modes within the defects of the structure. In studies on phononic crystals, phononic band structure diagrams are often used to investigate the variations in phononic bandgaps and elastic resonance modes. As the phononic band frequencies vary nonlinearly with the structural parameters, numerous calculations are required to analyze the gap or mode frequency shifts in phononic band structure diagrams. However, traditional calculation methods are time-consuming. Therefore, this study proposes the use of neural networks to replace the time-consuming calculation processes of traditional methods. Numerous band structure diagrams are initially obtained through the finite-element method and serve as the raw dataset, and a certain proportion of the data is randomly extracted from the dataset for neural network training. By treating each mode point in the band structure diagram as an independent data point, the training dataset for neural networks can be expanded from a small number to a large number of band structure diagrams. This study also introduces another network that effectively improves mode prediction accuracy by training neural networks to focus on specific modes. The proposed method effectively reduces the cost of repetitive calculations.
RESUMO
An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.
RESUMO
Cross-responsive chemical sensors are in high demand owing to their ability to distinguish a broad range of analytes. In this study, a vapochromic sensor array based on metal-organic frameworks (MOFs), which exhibits distinct patterns when exposed to volatile organic compounds (VOCs) and humidity, is developed. Conventional sensor arrays consist of various receptors that produce different responses. The vapochromic MOF-based sensor comprises dicopper paddlewheel clusters and dimethylamine azobenzene as binary colorimetric sensing moieties. Upon exposure to VOCs, the constructed sensor encompasses a broad spectrum of colors, ranging from green to red. Furthermore, the color of the MOF is influenced by the solvent used during the pretreatment. Consequently, monolayered MOF thin films can be adapted to multicomponent array systems by immersing the MOF in different solvents. This system provides both qualitative and quantitative sensing, generating unique color patterns corresponding to specific VOC types. Notably, the sensor successfully discriminates each of 14 common VOCs and water and accurately categorizes unknown samples. Moreover, the system undergoes reversible color changes in response to humidity, obviating the need for high-temperature regeneration steps. This novel approach offers insights into the versatile applications of MOFs by creating a colorimetric sensor array capable of detecting various analytes.
RESUMO
BACKGROUND: Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disorder that primarily causes symmetrical polyarthritis and bone deformity. In RA patients, sight-threatening inflammatory eye complications would be expected. OBJECTIVE: The objective of the study is to ascertain the macular retinal vessel density changes in RA patients and controls using optical coherence tomography angiography (OCTA), and to investigate the association between disease and microvascular density alterations. METHODS: A total of 12 RA patients (24 eyes) and 12 age- and gender-matched control participants (24 eyes) were recruited to the study. We used the Early Treatment Diabetic Retinopathy Study partitioning, hemispheric quadrants and annular partitioning to segment each image into different subregions. The vascular density of superficial retina layer, deep retina layer and conjunctival capillary plexus was quantitatively measured by OCTA and compared with the control group. Correlation analysis was used to explore the relationship between STMI and conjunctival capillaries densities. RESULTS: In the superficial retinal layer, the vascular density of S, I, L, SL, SR, IL and C1-C5 were significantly decreased in the RA group compared with the control group (P<0.05). For the deep retinal layer, the vascular density of S, SL, SR, IL, C1, C2 and C4 also decreased in RA group. A significant positive correlation was indicated between conjunctival vascular and STMI densities (r = 0.713, P<0.05). CONCLUSION: OCTA results suggest that RA patients present with a reduced macular retinal vascular density. These subtle alterations of ocular microcirculation may precede severe eye involvements and may be a potential biomarker for early distinguishing abnormal eyes from healthy eyes.
Assuntos
Artrite Reumatoide , Tomografia de Coerência Óptica , Humanos , Feminino , Angiofluoresceinografia/métodos , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Artrite Reumatoide/diagnóstico por imagemRESUMO
Class Ic ribonucleotide reductases (RNRIc) and R2-like ligand-binding oxidases (R2lox) are known to contain heterobimetallic MnIIFeII cofactors. How these enzymes assemble MnIIFeII cofactors has been a long-standing puzzle due to the weaker binding affinity of MnII versus FeII. In addition, the heterobimetallic selectivity of RNRIc and R2lox has yet to be reproduced with coordination complexes, leading to the hypothesis that RNRIc and R2lox overcome the thermodynamic preference for coordination of FeII over MnII with their carefully constructed three-dimensional protein structures. Herein, we report the selective formation of a heterobimetallic MnIIFeII complex accomplished in the absence of a protein scaffold. Treatment of the ligand Py4DMcT (L) with equimolar amounts of FeII and MnII along with two equivalents of acetate (OAc) affords [LMnIIFeII (OAc)2(OTf)]+ (MnIIFeII) in 80% yield, while the diiron complex [LFeIIFeII(OAc)2(OTf)]+ (FeIIFeII) is produced in only 8% yield. The formation of MnIIFeII is favored regardless of the order of addition of FeII and MnII sources. X-ray diffraction (XRD) of single crystals of MnIIFeII reveals an unsymmetrically coordinated carboxylate ligandâa primary coordination sphere feature shared by both RNRIc and R2lox that differentiates the two metal binding sites. Anomalous XRD studies confirm that MnIIFeII exhibits the same site selectivity as R2lox and RNRIc, with the FeII (d6) center preferentially occupying the distorted octahedral site. We conclude that the successful assembly of MnIIFeII originates from (1) Fe-deficient conditions, (2) site differentiation, and (3) the inability of ligand L to house a dimanganese complex.
Assuntos
Ferro , Ribonucleotídeo Redutases , Ferro/química , Ligantes , Oxirredutases/metabolismo , Ribonucleotídeo Redutases/química , Compostos FerrososRESUMO
Taiwania cryptomerioides Hayata is an endangered relict plant belonging to Taxodiaceae, and it is also an endemic plant to China. The decay-resistant of Taiwania timber can provide highly quality wood for building and furniture. Plenty of regenerative of leaves of T.â cryptomerioides also has been used as a resource for the discovery of new dimeric diterpenoids. In a search for structurally diverse dimeric diterpenoids and potent bioactive isolates, ten new heterodimeric diterpenoids, taiwaniadducts K-T (1-4, 6, 8-11, and 14), along with five known ones (5, 7, 12, 13, and 15), were isolated from the leaves of T.â cryptomerioides. These new compounds were defined by comprehensive spectroscopic analyses, putative biosynthetic pathways, and the values of optical. Biologically, anti-multidrug resistance (MDR) activities of compounds were evaluated. Compounds 4 and 10 exerted a 9.18-fold potentiation effect on bortezmib (BTZ) susceptibility at a tested concentration (20â µM) better than the positive control verapamil. The research of the leaves of T.â cryptomerioides not only added the new data to the structural diversity and activities of dimeric diterpenoids but also could provide support for the medical and industrial application of the leaves of this endangered relict plant.
Assuntos
Cupressaceae , Diterpenos , Diterpenos/química , Extratos Vegetais/química , Madeira , Análise Espectral , Cupressaceae/química , Estrutura MolecularRESUMO
Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid-state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two-dimensional Sr(Ag1-x Lix )2 Se2 layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1-x Lix )2 Se2 with x up to 0.45. In addition, a new type of intergrowth compound [Sr3 Se2 ][(Ag1-x Lix )2 Se2 ] was synthesized upon further reaction of Sr(Ag1-x Lix )2 Se2 with SrSe. Both Sr(Ag1-x Lix )2 Se2 and [Sr3 Se2 ][(Ag1-x Lix )2 Se2 ] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1-x Lix )2 Se2 can be precisely tuned via fine-tuning x that is controlled by only the flux ratio and temperature.
RESUMO
Due to anthropogenic activities, heavy metals are discharged into the hydrosphere and deposit onto the sediment. Heavy metals remobilize through physical disturbance and change in environmental conditions, posing a risk to environments and human health. Among several remediation methods, active layer capping is considered to be more feasible due to its financial and technical advantages; however, its long-term effects remain unknown. To overcome this problem, this work applied a novel, recoverable amendment, sulfurized magnetic biochar (SMBC), to remediate multiple heavy metal (Cu, Ni, Zn, Cr, Hg, and MeHg) contaminated sediment. Physiochemical characterization shows magnetite (Fe3O4) crystalline in both magnetic biochar (MBC) and SMBC, with such characteristics resulting in a greater surface area (324.9 and 346.3 m2/g) than BC (39.6 m2/g) and SBC (65.0 m2/g). FeS crystalline was also observed in SMBC, which plays an important role in controlling heavy metal release from sediment. Microcosm experiments indicated the effectiveness of SMBC in lowering aquatic Cu, Ni, Zn, Hg, and MeHg releases was significantly greater than the other three biochar materials. Notably, the recovery of SMBC by magnetism was 87%, demonstrating the exceptional recoverability of SMBC from seawater and sediment. Based on its robust capability in lowering Cu, Ni, Zn, Hg, and MeHg release and excellent recoverability from seawater and sediment, this technique represents a practical alternative to conventional approaches for heavy metal immobilization from sediment.
Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Carvão Vegetal/química , Fenômenos Magnéticos , Metais Pesados/química , Poluentes Químicos da Água/análise , Sedimentos GeológicosRESUMO
Radical-ionic metal-organic frameworks (MOFs) have unique optical, magnetic, and electronic properties. These radical ions, forcibly formed by external stimulus-induced redox processes, are structurally unstable and have short radical lifetimes. Here, we report two naphthalenediimide-based (NDI-based) Ca-MOFs: DGIST-6 and DGIST-7. Neutral DGIST-6, which is generated first during solvothermal synthesis, decomposes and is converted into radical-anionic DGIST-7. Cofacial (NDI)2â¢- and (NDI)22- dimers are effectively stabilized in DGIST-7 by electron delocalization and spin-pairing as well as dimethylammonium counter cations in their pores. Single-crystal x-ray diffractometry was used to visualize redox-associated structural transformations, such as changes in centroid-to-centroid distance. Moreover, the unusual rapid reduction of oxidized DGIST-7 into the radical anion upon infrared irradiation results in effective and reproducible photothermal conversion. This study successfully illustrated the strategic use of in situ prepared cofacial ligand dimers in MOFs that facilitate the stabilization of radical ions.
RESUMO
Photonic crystals possess metastructures with a unique dispersion relation. An integrated optical circuit plays a crucial role in quantum computing, for which miniaturized optical components can be designed according to the characteristics of photonic crystals. Because the stable light transmission mode for a square waveguide is transverse electric or transverse magnetic polarization, we designed a half-waveplate element with a photonic crystal that can rotate the polarization direction of the light incident on a waveguide by 90°. Using the dispersion relation of photonic crystals, the polarization rotation length and the optical axis's angle of deviation from the electric field in the eigenmode can be effectively calculated. Polarization rotators designed on the basis of photonic crystal structures can effectively reduce the insertion loss of components and exhibit favorable polarization rotation performance.
RESUMO
Metal-organic frameworks (MOFs) provide an ideal platform for ion exchange due to their high porosity and structural designability; however, developing MOFs that have the essential characteristics for ion exchange remains a challenge. These crucial features include fast kinetics, selectivity, and stability. We present two anionic isomers, DGIST-2 (2D) and DGIST-3 (3D), comprising distinctly arranged 5-(1,8-naphthalimido)isophthalate ligands and In3+ cations. Interestingly, in protic solvents, DGIST-2 transforms into a hydrolytically stable crystalline phase, DGIST-2'. DGIST-2' and DGIST-3 exhibit rapid Cs+ adsorption kinetics, as well as high Cs+ affinity in the presence of competing cations. The mechanism for rapid and selective sorption is explored based on the results of single-crystal X-ray diffraction analysis of Cs+-incorporated DGIST-3. In Cs+-containing solutions, the loosely incorporated dimethylammonium countercation of the anionic framework is replaced by Cs+, which is held in the hydrophobic cavity by supramolecular ion-ion and cation-π interactions.
RESUMO
Mechanochemical synthesis is emerging as an environmentally friendly yet efficient approach to preparing metal-organic frameworks (MOFs). Herein, we report our systematic investigation on the mechanochemical syntheses of Group 4 element-based MOFs. The developed mechanochemistry allows us to synthesize a family of Hf4O4(OH)4(OOC)12-based MOFs. Integrating [Zr6O4(OH)4(OAc)12]2 and [Hf6O4(OH)4(OAc)12]2 under the mechanochemical conditions leads to a unique family of cluster-precise multimetallic MOFs that cannot be accessed by the conventional solvothermal synthesis. Extensive efforts have not yielded an effective pathway for preparing TiIV-derived MOFs, tentatively because of the relatively low Ti-O bond dissociation energy.
RESUMO
Due to public health threats resulting from mercury (Hg) and its distribution in the food chain, global restrictions have been placed on Hg use and emissions. Biochar is a porous, carbonaceous adsorbent typically derived from waste biomass or organic matter, making it an eco-friendly material for aqueous mercury (Hg(II)) control. Functionalization of biochar can improve performance in pollution control applications. In this work, carbonization, magnetization, and sulfurization of biochar were combined into a single heating step to prepare sulfurized magnetic biochar (SMBC) for Hg(II) removal from water. Results indicate that SMBC prepared at 600 °C adsorbed 8.93 mg/g Hg(II), more than materials prepared at 400, 500, 700, 800, and 900 °C. Additionally, Hg(II) adsorption onto SMBC was 53.0% and 11.5% greater than onto magnetic biochar (MBC) and biochar (BC), respectively. Hg(II) adsorption is shown to be favorable in acidic conditions (pH 3.5-5), thermodynamically spontaneous, and endothermic. Adsorption results fit the pseudo-second-order (R2 = 0.990 and the sum of squared error (SSE) = 5.382) and external mass transfer (R2 = 0.971 and SSE = 9.422) models. The partitioning coefficients were 4.964 mg/g/µM in freshwater, 0.176 mg/g/µM in estuary water, and 0.275 mg/g/µM in seawater, highlighting the importance of salinity in environmental remediation applications. In summary, SMBC can be readily prepared with minimal processing steps. The product is a robust adsorbent for Hg(II), and it can potentially be applied to remediate contaminated water/sediment/soil in the future.
RESUMO
We report a synthetic strategy to integrate discrete coordination cages into extended porous materials by decorating opposite charges on the singular cage, which offers multidirectional electrostatic forces among cages and leads to a porous supramolecular ionic solid. The resulting material is non-centrosymmetric and affords a piezoelectric coefficient of 8.19 pC N-1, higher than that of the wurtzite ZnO.
RESUMO
BACKGROUND: Multimorbidity presents a key challenge to healthcare systems globally. However, heterogeneity in the definition of multimorbidity and design of epidemiological studies results in difficulty in comparing multimorbidity studies. This scoping review aimed to describe multimorbidity prevalence in studies using large datasets and report the differences in multimorbidity definition and study design. METHODS: We conducted a systematic search of MEDLINE, EMBASE, and CINAHL databases to identify large epidemiological studies on multimorbidity. We used the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) protocol for reporting the results. RESULTS: Twenty articles were identified. We found two key definitions of multimorbidity: at least two (MM2+) or at least three (MM3+) chronic conditions. The prevalence of multimorbidity MM2+ ranged from 15.3% to 93.1%, and 11.8% to 89.7% in MM3+. The number of chronic conditions used by the articles ranged from 15 to 147, which were organized into 21 body system categories. There were seventeen cross-sectional studies and three retrospective cohort studies, and four diagnosis coding systems were used. CONCLUSIONS: We found a wide range in reported prevalence, definition, and conduct of multimorbidity studies. Obtaining consensus in these areas will facilitate better understanding of the magnitude and epidemiology of multimorbidity.
Assuntos
Multimorbidade , Comorbidade , Estudos Transversais , Humanos , Prevalência , Estudos RetrospectivosRESUMO
Interprofessional mentoring in palliative care sees different members of the interprofessional team providing holistic, personalised andlongitudinal mentoring support, skills training and knowledge transfer as they mentor trainees at different points along their mentoring journeys. However, gaps in practice and their risk of potential mentoring malpractice even as interprofessional mentoring use continues to grow in palliative medicine underlines the need for careful scrutiny of its characteristics and constituents in order to enhance the design, evaluation and oversight of interprofessional mentoring programmes. Hence, a systematic scoping review on prevailing accounts of interprofessional mentoring in medicine is conducted to address this gap. Using Arksey and O'Malley's (2005) methodological framework for conducting scoping reviews and identical search strategies, 6 reviewers performed independent literature reviews of accounts of interprofessional mentoring published in 10 databases. Braun and Clarke's (2006) thematic analysis approach was adopted to evaluate across different mentoring settings. A total of 11111 abstracts were identified from 10 databases, 103 full-text articles reviewed and 14 full-text articles were thematically analysed to reveal 4 themes: characterizing, implementing, evaluating and obstacles to interprofessional mentoring. Interprofessional mentoring is founded upon a respectful and collaborative mentoring relationship that thrives despite inevitable differences in individual values, ethical perspectives at different career stages within diverse working environments. This warrants effective mentor-mentee trainings, alignment of expectations, roles and responsibilities, goals and timelines, and effective oversight of the programmes. Drawing upon the data provided, an interprofessional mentoring framework is forwarded to guide the design, evaluation and oversight of the programmes.
Assuntos
Medicina , Tutoria , Humanos , Relações Interprofissionais , MentoresRESUMO
BACKGROUND: The re-introduction of medical students into healthcare systems struggling with the COVID-19 pandemic raises concerns as to whether they will be supported when confronted with death and dying patients in resource-limited settings and with reduced support from senior clinicians. Better understanding of how medical students respond to death and dying will inform educationalists and clinicians on how to best support them. METHODS: We adopt Krishna's Systematic Evidence Based Approach to carry out a Systematic Scoping Review (SSR in SEBA) on the impact of death and dying on medical students. This structured search process and concurrent use of thematic and directed content analysis of data from six databases (Split Approach) enhances the transparency and reproducibility of this review. RESULTS: Seven thousand six hundred nineteen were identified, 149 articles reviewed and 52 articles included. The Split Approach revealed similar themes and categories that correspond to the Innate, Individual, Relational and Societal domains in the Ring Theory of Personhood. CONCLUSION: Facing death and dying amongst their patients affect how medical students envisage their personhood. This underlines the need for timely, holistic and longitudinal support systems to ensure that problems faced are addressed early. To do so, there must be effective training and a structured support mechanism.
Assuntos
Morte , Pessoalidade , Estudantes de Medicina/psicologia , COVID-19/mortalidade , Currículo , Humanos , Pandemias , Projetos de Pesquisa , SARS-CoV-2 , Faculdades de Medicina/organização & administração , Apoio SocialRESUMO
BACKGROUND: Medical professionalism enhances doctor-patient relationships and advances patient-centric care. However, despite its pivotal role, the concept of medical professionalism remains diversely understood, taught and thus poorly assessed with Singapore lacking a linguistically sensitive, context specific and culturally appropriate assessment tool. A scoping review of assessments of professionalism in medicine was thus carried out to better guide its understanding. METHODS: Arksey and O'Malley's (2005) approach to scoping reviews was used to identify appropriate publications featured in four databases published between 1 January 1990 and 31 December 2018. Seven members of the research team employed thematic analysis to evaluate the selected articles. RESULTS: 3799 abstracts were identified, 138 full-text articles reviewed and 74 studies included. The two themes identified were the context-specific nature of assessments and competency-based stages in medical professionalism. CONCLUSIONS: Prevailing assessments of professionalism in medicine must contend with differences in setting, context and levels of professional development as these explicate variances found in existing assessment criteria and approaches. However, acknowledging the significance of context-specific competency-based stages in medical professionalism will allow the forwarding of guiding principles to aid the design of a culturally-sensitive and practical approach to assessing professionalism.
RESUMO
In undergraduate and postgraduate medical education, mentoring offers personalized training and plays a key role in continuing medical education and the professional development of healthcare professionals. However, poor structuring of the mentoring process has been attributed to failings of the host organization and, as such, we have conducted a scoping review on the role of the host organization in mentoring programs. Guided by Levac et al's methodological framework and a combination of thematic and content analysis, this scoping review identifies their "defining" and secondary roles. Whilst the "defining" role of the host is to set standards, nurture, and oversee the mentoring processes and relationships, the secondary roles comprise of supporting patient care and specific responsibilities toward the mentee, mentor, program, and organization itself. Critically, striking a balance between structure and flexibility within the program is important to ensure consistency in the mentoring approach whilst accounting for the changing needs and goals of the mentees and mentors.