Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Total Environ ; 935: 173371, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772486

RESUMO

Abundant naturally and anthropogenically exposed surrounding rocks (NESRs and AESRs) in mining areas may pose persistent threats as sources of potentially toxic elements (PTEs), but this has been historically overlooked, especially for thallium (Tl) and arsenic (As). Here, the release risks of Tl and As from both NESRs and AESRs in a typical TlAs sulfide mining area were investigated. In a single leaching process, AESRs released 10.4 % of total Tl (157 µg L-1) and 32.5 % of total As (4089 µg L-1), 2-3 orders of magnitude higher than NESRs. Prolonged multiple leaching tests revealed notable and long-term risks of release of Tl and As from AESRs, associated with oxidation and dissolution of iron/sulfur-bearing minerals. Substantial release of PTEs was linked to the transformation/degradation of the -OH functional group and extensive dissolution of secondary sulfate minerals in AESRs. Ultrafiltration and STEM-EDS indicate that 18.4 % of water-extracted As released from AESRs existed as natural nanoparticles consisting of iron/sulfur-bearing minerals. This study highlights the high risks of Tl and As release from anthropogenically exposed surrounding rocks and the importance of nanoparticles in PTE transport, and provides insights into the control of PTEs in mining areas.

2.
J Hazard Mater ; 471: 134414, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678718

RESUMO

Understanding chromium (Cr) migration and dispersion patterns in the soil-groundwater system is critical for the control and remediation of subsurface Cr contamination. In this study, a typical Cr-contaminated site from the Pearl River Delta (PRD) in China was simulated with a three-dimensional (3D) sandbox experiment to investigate the migration and transformation behavior of Cr. Results revealed that under the combined influence of rainfall and groundwater flow, a complex flow field favorable for 3D migration and solute dispersion was formed. The flow field characteristics were influenced by water-table depth, which in turn affected Cr behavior in the system. Moreover, downward flow field expansion under low water-table conditions led to Cr vertical migration range expansion, causing greater contamination in the deep soil. The migration process was accompanied with Cr(VI) reduction, during which approximately 75 % of the total Cr was immobilized in soils. The reactive transport model achieved a good fit for Cr retention and morphological distribution in the solid phase. The model indicates that Cr is more readily transported and dispersed with groundwater, and Cr migrated and spread downstream by 15 m during the eighth year. Therefore, managing water-table depth could be a strategy to minimize the Cr vertical migration and contamination.

3.
J Hazard Mater ; 468: 133788, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367443

RESUMO

Organic farming is a sustainable agricultural practice emphasizing natural inputs and ecological balance, and has garnered significant attention for its potential health and environmental benefits. However, a comprehensive evaluation of the emergent contaminants, particularly resistance and virulence genes within organic farming system, remains elusive. Here, a total of 36 soil samples from paired conventional and organic vegetable farms were collected from Jiangsu province, China. A systematic metagenomic approach was employed to investigate the prevalence, dispersal capability, pathogenic potential, and drivers of resistance and virulence genes across both organic and conventional systems. Our findings revealed a higher abundance of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) in organic farming system, with ARGs exhibiting a particularly notable increase of 10.76% compared to the conventional one. Pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Mycobacterium tuberculosis were hosts carrying all four gene categories, highlighting their potential health implications. The neutral community model captured 77.1% and 71.9% of the variance in community dynamics within the conventional and organic farming systems, respectively, indicating that stochastic process was the predominant factor shaping gene communities. The relative smaller m value calculated in organic farming system (0.021 vs 0.023) indicated diminished gene exchange with external sources. Moreover, farming practices were observed to influence the resistance and virulence gene landscape by modifying soil properties, managing heavy metal stress, and steering mobile genetic elements (MGEs) dynamics. The study offers insights that can guide agricultural strategies to address potential health and ecological concerns.


Assuntos
Agricultura Orgânica , Solo , Virulência/genética , Agricultura , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Genes Bacterianos , Microbiologia do Solo
4.
Toxins (Basel) ; 16(2)2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38393160

RESUMO

Irrigation with water containing a variety of microcystins (MCs) may pose a potential threat to the normal growth of agricultural plants. To investigate the phytotoxicity of MC-LR at environmental concentrations on rice (Oryza sativa L.), the characteristics of uptake and accumulation in plant tissues, as well as a series of key physio-biochemical process changes in leaves of rice seedlings, were measured at concentrations of 0.10, 1.0, 10.0, and 50.0 µg·L-1 in hydroponic nutrient solutions for 7, 15, 20, and 34 days. Results showed that MC-LR could be detected in rice leaves and roots in exposure groups; however, a significant accumulation trend of MC-LR in plants (BCF > 1) was only found in the 0.10 µg·L-1 group. The time-course study revealed a biphasic response of O2•- levels in rice leaves to the exposure of MC-LR, which could be attributed to the combined effects of the antioxidant system and detoxification reaction in rice. Exposure to 1.0-50.0 µg·L-1 MC-LR resulted in significant depletion of GSH and MDA contents in rice leaves at later exposure times (15-34 days). Low MC-LR concentrations promoted nitric oxide synthase (NOS) activity, whereas high concentrations inhibited NOS activity during the later exposure times. The reduced sucrose synthase (SS) activities in rice exposed to MC-LR for 34 days indicated a decrease in the carbon accumulation ability of plants, and therefore may be directly related to the inhibition of plant growth under MC exposure. These findings indicate that the normal physiological status would be disrupted in terrestrial plants, even under exposure to low concentrations of MC-LR.


Assuntos
Toxinas Marinhas , Microcistinas , Oryza , Microcistinas/toxicidade , Microcistinas/metabolismo , Bioacumulação , Hidroponia
5.
J Hazard Mater ; 467: 133630, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38330643

RESUMO

Nitrogen fertilizer supports global food production, but its manufacturing results in substantial ammonia nitrogen (AN) contaminated sites which remain largely unexplored. In this study, ten representative AN contaminated sites were investigated, covering a wide range of subsurface pH, temperature, and AN concentration. A total of 7232 soil samples and 392 groundwater samples were collected to determine the concentration levels, migration patterns, and accurate health risks of AN. The results indicated that AN concentrations in soil and groundwater reached 12700 mg/kg and 12600 mg/L, respectively. AN concentrations were higher in production areas than in non-production areas, and tended to migrate downward from surface to deeper soil. Conventional risk assessment based on AN concentration identified seven out of the ten sites presenting unacceptable risks, with remediation costs and CO2 emissions amounting to $1.67 million and 17553.7 tons, respectively. A novel risk assessment model was developed, which calculated risks based on multiplying AN concentration by a coefficient fNH3 (the ratio of NH3 to AN concentration). The mean fNH3 values, primarily affected by subsurface pH, varied between 0.02 and 0.25 across the ten sites. This new model suggested all investigated sites posed acceptable health risks related to AN exposure, leading to their redevelopment without AN-specific remediation. This research offers a thorough insight into AN contaminated site, holds great realistic significance in alleviating global economic and climate pressures, and highlights the need for future research on refined health risk assessments for more contaminants.


Assuntos
Amônia , Nitrogênio , Humanos , Medição de Risco , Solo , Concentração de Íons de Hidrogênio
6.
J Hazard Mater ; 465: 133211, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101008

RESUMO

Water-dispersible colloids (WDCs) are vital for trace element migration, but there is limited information about the abundance, size distribution and elemental composition of WDC-bound thallium (Tl) and arsenic (As) in mining-contaminated soils and sediments solutions. Here, we investigated the potential mobilization of WDC-bound Tl and As in soils and sediments in a typical Tl/As-contaminated area. Ultrafiltration results revealed on average > 60% of Tl and As in soil solution (< 220 nm) coexisted in colloidal form whereas Tl and As in sediment solution primarily existed in the truly dissolved state (< 10 kDa) due to increased acidity. Using AF4-UV-ICP-MS and STEM-EDS, we identified Fe-bearing WDCs in association with aluminosilicate minerals and organic matter were main carriers of Tl and As. SAED further verified jarosite nanoparticles were important components of soil WDC, directly participating in the migration of Tl and As. Notably, high pollution levels and solution pH promoted the release of Tl/As-containing WDCs. This study provides quantitative and visual insights into the distribution of Tl and As in WDC, highlighting the important roles of Fe-bearing WDC, soil solution pH and pollution level in the potential mobilization of Tl and As in contaminated soils and sediments.

7.
Chemosphere ; 331: 138736, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37088215

RESUMO

Molybdenum disulfide (MoS2) nanosheets are being increasingly employed in various applications. It is therefore imperative to assess their potential environmental implications in a changing world, particularly in the context of global warming. Here, we assessed the effects of MoS2 nanosheets on wheat Triticum aestivum L. under today's typical climatic conditions (22 °C) and future climatic conditions (30 °C), respectively. The results showed that MoS2 nanosheets (10 and 100 Mo mg/L) did not significantly affect wheat plant growth, root morphological traits, and chlorophyll fluorescence, regardless of dose and temperature. However, the metabolic processes were significantly altered in T. aestivum upon exposure to individual MoS2 nanosheets and to a combination of MoS2 nanosheets and future global warming. As a non-specific protective strategy, the wheat plants that were under stress conditions maintained the stability of cell membranes and thus relieved cell injury by accumulating more glycerophospholipids. Warming additionally influenced the nitrogen and carbon pool reallocation in wheat root. MoS2 nanosheets mainly depleted a range of antioxidant metabolites involved in phenylpropanoid biosynthesis and taurine and hypotaurine metabolism, while warming activated vitamin B6 cofactors related to vitamin B6 metabolism. Metabolites involved in glutathione metabolism were uniquely upregulated while most metabolites associated with nucleotide metabolisms were uniquely downregulated in combination-treated wheat. Overall, wheat plants regulated a wide range of growth-related processes, including carbohydrate, amino acids, lipid, vitamins, and nucleotide metabolism, to maintain optimal metabolite pool sizes and eventually global metabolic homeostasis upon different stress conditions. Our findings provide novel insights into MoS2 nanosheets-mediated crop responses under global warming.


Assuntos
Molibdênio , Nanopartículas , Triticum , Carbono , Molibdênio/farmacologia , Molibdênio/química , Nucleotídeos
8.
Appl Opt ; 62(6): 1528-1536, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821314

RESUMO

To address low communication quality and limited transmission rate between vehicle nodes in the vehicularad hoc network (VANET), this paper builds a heterogeneous visible light communication (VLC) and radio frequency (RF) communication multi-hop communication model based on vehicle node clustering, and then a heterogeneous VLC/RF multi-hop cluster vehicle-to-vehicle (V2V) channel allocation algorithm based on equivalent signal to interference plus noise ratio (SINR) (NCAABES) is presented. This algorithm is based on the clustering of vehicle nodes, which introduces the concept of equivalent SINR. The equivalent SINR of the VLC channel between the cluster head (CH) and cluster member (CM) is used as the condition for channel allocation. When the channel between CH and CM is blocked or low quality, the neighboring vehicle between two vehicles is used as a relay node to communicate in a multi-hop way, and the channel with the best SINR is chosen as the current CH-CM or CM-CM communication method. The simulation results show that the SINR of NCAABES in this paper increases by 21.73%, 30.23%, and 70.96% compared to the novel multi-hop clustering scheme based on the weighted virtual distance detection (MCSVDD), the VLC network (VLCnet), and the RF network (RFnet), respectively. And the NCAABES's bit error rate (BER) is always the lowest compared to MCSVDD, VLCnet, and RFnet, even when the number of vehicles and transmission power change. This algorithm can improve the quality of communication between vehicle nodes, make VANET more efficient, and get a higher transmission rate.

9.
Sci Total Environ ; 818: 151685, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34785231

RESUMO

The boom in the takeaway industry has significantly increased the consumption of disposable plastic materials, which are very likely to release microplastic particles and cause secondary risks during daily use. The objective of this study was to probe whether heat treatment of disposable plastic materials in water, mimicking their use for hot food or drink, could result in the release of particles and harmful substances in the leachate. Our results showed that a hot water (100 °C) soaking released 1.07 ± 0.507, 1.44 ± 0.147, 2.24 ± 0.719 and 1.57 ± 0.599 million submicron and microparticles/mL from plastic packaging, cups, transparent boxes and expandable boxes, respectively after 60 min of agitation, and the submicron fraction was dominant. Based on Fourier transform infrared spectroscopy, heat treatment also altered the chemical composition of polyethylene packaging, but it had minor effects on polypropylene cups, transparent boxes and polystyrene expandable boxes. In addition, organic chemicals and heavy metals (mainly As, Cr and Pb), with maximum concentrations of 2.1 ± 0.85 mgC/L and 4.2 ± 0.32 ng/L, were detected in the leachate from plastic packaging, cups and expandable boxes, indicating the potential risk of these materials while holding hot food or drink. The findings suggest the potential ingestion risk of microplastics and harmful substances by human beings during the daily use of disposable plastic materials.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos/química , Água , Poluentes Químicos da Água/análise
10.
Int J Phytoremediation ; 23(7): 715-725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33251821

RESUMO

Rapid and safe treatment of harvested fresh biomass of hyperaccumulators is essential for phytoremediation of metal-contaminated soils. Here, an electro-Fenton (EF) process was used to remove cadmium (Cd) and chemical oxidation demand (COD) from waste liquor from the dewatering of biomass of the hyperaccumulator Sedum plumbizincicola after flocculation precipitation. The results showed that the order of impact of the factors on the removal rate of COD and Cd was pH > electrical current density > H2O2 dosage. Increasing pH promoted Cd removal but hindered COD removal. As current density and H2O2 dosage increased the removal rates of both Cd and COD initially increased and then decreased. Compared to an electrocoagulation process, the addition of H2O2 in EF process greatly enhanced Cd and zinc (Zn) removal. Speciation analysis showed that most of the Cd and Zn in the initial liquor were organically and inorganically complexed. At optimal conditions, e.g., pH 5, current density 15 mA cm-2 and H2O2 dosage 9 g L-1, the removal efficiencies of Cd, Zn and COD reached 99.4, 99.9 and 55.5% after 80 min of EF treatment. Electro-Fenton process can therefore be used to quickly remove trace metals from the waste liquor of the hyperaccumulator.


Assuntos
Sedum , Poluentes do Solo , Poluentes Químicos da Água , Biodegradação Ambiental , Cádmio , Peróxido de Hidrogênio , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos
11.
Ecotoxicol Environ Saf ; 205: 111346, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977285

RESUMO

It is a daunting challenge to predict toxicity and accumulation of rare earth metals (REMs) in different exposure scenarios (e.g., varying water chemistry and metal combinations). Herein, we investigated the toxicity and uptake of La and Ce in the presence of various levels of Ca, Mg, Na, K, and at different pH values, as well as the combined effects of La and Ce in wheat Triticum aestivum. Major cations (Ca2+ and Mg2+) significantly mitigated the toxicity and accumulation of La3+/Ce3+. Toxicity and uptake of La, Ce, and La-Ce mixtures could be well quantified by the multi-metal biotic ligand model (BLM) and by the Langmuir-type uptake model with the consideration of the competitive effects of Ca2+ and Mg2+, with more than 85.1% of variations explained. The derived binding constants of Ca, Mg, La, and Ce to wheat root were respectively 3.87, 3.59, 6.97, and 6.48 on the basis of toxicity data, and 3.23, 2.84, 6.07, and 5.27 on the basis of uptake data. The use of the alternative WHAM-Ftox approach, requiring fewer model parameters than the BLM but with similar Akaike information criterion (AIC) values, successfully predicted the toxicity and accumulation of La/Ce as well as toxicity of La-Ce mixtures, with at least 76.4% of variations explained. However, caution should be taken when using this approach to explain the uptake of La-Ce mixtures. Our results provided promising tools for delineating REMs toxicity/uptake in the presence of other toxicity-modifying factors or in mixture scenarios.


Assuntos
Metais Terras Raras/toxicidade , Triticum/fisiologia , Disponibilidade Biológica , Cátions/farmacologia , Ligantes , Metais/farmacologia , Modelos Biológicos , Sódio , Triticum/efeitos dos fármacos
12.
Chemosphere ; 180: 117-124, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28395149

RESUMO

Bis(2-chloroethyl) ether (BCEE) is a common chemical material and a frequently detected contaminant in groundwater. It has a strong toxicity and some other chemicals such as poly(vinyl chloride-co-isobutyl vinyl ether) contain similar chloroaliphatic ether structure. So the effective degradation method and transformation pathways for BCEE need to be learned. The present study compared the degradation rate of BCEE by Fenton's reagent and other common oxidation methods, and optimized the reaction conditions. Oxidation intermediates and pathways were also proposed and toxicities of the intermediates were investigated. Results showed that Fenton was highly effective to degrade BCEE. pH, Fe2+ and H2O2 concentration all affected the oxidation rate, among which Fe2+ was the most significant variable. A total of twelve chlorinated intermediates were detected. Three main reaction pathways involved cleavage of the ether bond, hydroxyl substitution for hydrogen, and radical coupling. The pathways could be well interpreted and supported by theoretical calculations. The reaction mixture showed a decreasing trend in TOC concentration and toxicity until totally harmless to Vibrio fischeri after 15 min, but it was noteworthy that toxicities of some dimeric intermediates were stronger than BCEE by calculation.


Assuntos
Éter/análogos & derivados , Poluentes Químicos da Água/química , Aliivibrio fischeri , Éter/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Ferro , Cinética , Oxirredução , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 24(12): 11549-11558, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28321700

RESUMO

The widespread occurrence of organophosphorus pesticides (OPPs) in the environment poses risks to both ecologic system as well as human health. This study investigated the oxidation kinetics of chlorpyrifos (CP), one of the typical OPPs, by thermoactivated persulfate (PS) oxidation process, and evaluated the influence of key kinetic factors, such as PS concentrations, pH, temperature, bicarbonate, and chloride ions. The reaction pathways and mechanisms were also proposed based on products identification by LC-MS techniques. Our results revealed that increasing initial PS concentration and temperature favored the decomposition of CP, whereas the oxidation efficiency was not affected by pH change ranging from 3 to 11. Bicarbonate was found to play a detrimental role on CP removal rates, while chloride showed no effect. The oxidation pathways including initial oxidation of P=S bond to P=O, dechlorination, dealkylation, and the dechlorination-hydroxylation were proposed, and the detailed underlying mechanisms were also discussed. Molecular orbital (MO) calculations indicated that P=S bond was the most favored oxidation site of the molecule. The toxicity of reaction solution was believed to increase due to the formation of products with P=O structures. This work demonstrates that OPPs can readily react with SO4·- and provides important information for further research on the oxidation of these contaminants.


Assuntos
Clorpirifos/química , Praguicidas/química , Poluentes Químicos da Água/química , Halogenação , Cinética , Oxirredução , Sulfatos/química
14.
Environ Geochem Health ; 39(2): 353-367, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27530933

RESUMO

Economic and highly effective methods of in situ remediation of Cd and As polluted farmland in mining areas are urgently needed. Pot experiments with Brassica chinensis L. were carried out to determine the effects of three soil amendments [a novel iron-silicon material (ISM), a synthetic zeolite (SZ) and an alkaline clay (AC)] on vegetable uptake of As and Cd. SEM-EDS and XRD analyses were used to investigate the remediation mechanisms involved. Amendment with ISM significantly reduced the concentrations of As and Cd in edible parts of B. chinensis (by 84-94 % and 38-87 %, respectively), to levels that met food safety regulations and was much lower than those achieved by SZ and AC. ISM also significantly increased fresh biomass by 169-1412 % and 436-731 % in two consecutive growing seasons, while SZ and AC did not significantly affect vegetable growth. Correlation analysis suggested that it was the mitigating effects of ISM on soil acidity and on As and Cd toxicity, rather than nutrient amelioration, that contributed to the improvement in plant growth. SEM-EDS analysis showed that ISM contained far more Ca, Fe and Mn than did SZ or AC, and XRD analysis showed that in the ISM these elements were primarily in the form of silicates, oxides and phosphates that had high capacities for chemisorption of metal(loid)s. After incubation with solutions containing 800 mg L-1 AsO42- or Cd2+, ISM bound distinctly higher levels of As (6.18 % in relative mass percent by EDS analysis) and Cd (7.21 % in relative mass percent by EDS analysis) compared to SZ and AC. XRD analysis also showed that ISM facilitated the precipitation of Cd2+ as silicates, phosphates and hydroxides, and that arsenate combined with Fe, Al, Ca and Mg to form insoluble arsenate compounds. These precipitation mechanisms were much more active in ISM than in SZ or AC. Due to the greater pH elevation caused by the abundant calcium silicate, chemisorption and precipitation mechanisms in ISM treatments could be further enhanced. That heavy metal(loid)s fixation mechanisms of ISM ensure the remediation more irreversible and more resilient to environmental changes. With appropriate application rate and proper nutrients supplement, the readily available and economic ISM is a very promising amendment for safe crop production on multi-metal(loids) polluted soils.


Assuntos
Arsênio/farmacocinética , Brassica/metabolismo , Cádmio/farmacocinética , Poluentes do Solo/farmacocinética , Verduras/metabolismo , Zeolitas , Agricultura , Silicatos de Alumínio , Arsênio/análise , Biomassa , Brassica/efeitos dos fármacos , Cádmio/análise , China , Argila , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Ferro , Mineração , Silício , Solo/química
15.
Appl Environ Microbiol ; 82(6): 1734-1744, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729719

RESUMO

Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Enterobacter/efeitos dos fármacos , Enterobacter/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Estresse Fisiológico , Enterobacter/classificação , Enterobacter/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Testes de Sensibilidade Microbiana , Reguladores de Crescimento de Plantas/metabolismo , Sideróforos/metabolismo , Microbiologia do Solo
16.
PLoS One ; 10(6): e0129978, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26087302

RESUMO

This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils.


Assuntos
Cádmio/isolamento & purificação , Ácido Cítrico/química , Glicolipídeos/química , Hexaclorocicloexano/isolamento & purificação , Inseticidas/isolamento & purificação , Chumbo/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Adsorção , Solo/química , Solubilidade
17.
Plant Physiol Biochem ; 73: 70-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077231

RESUMO

Mechanisms of cadmium (Cd)-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata were investigated using photosynthesis limitation analysis. P. divaricata seedlings were grown in nutrient solution containing 0, 5, 10, 25, 50, or 75 µM Cd for 2 weeks. Total limitations to photosynthesis (TL) increased from 0% at 5 µM Cd to 68.8% at 75 µM Cd. CO2 diffusional limitation (DL) made the largest contribution to TL, accounting for 93-98% of TL in the three highest Cd treatments, compared to just 2-7% of TL attributable to biochemical limitation (BL). Microscopic imaging revealed significantly decreased stomatal density and mesophyll thickness in the three highest Cd treatments. Chlorophyll fluorescence parameters related to photosynthetic biochemistry (Fv/Fm, NPQ, ΦPSII, and qP) were not significantly decreased by increased Cd supply. Our results suggest that increased DL in leaves is the main cause of Cd-induced inhibition of photosynthesis in P. divaricata, possibly due to suppressed function of mesophyll and stomata. Analysis of chlorophyll fluorescence showed that Cd supply had little effect on photochemistry parameters, suggesting that the PSII reaction centers are not a main target of Cd inhibition of photosynthesis in P. divaricata.


Assuntos
Adaptação Fisiológica , Asteraceae/efeitos dos fármacos , Cádmio/efeitos adversos , Dióxido de Carbono/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Estresse Fisiológico , Asteraceae/metabolismo , Asteraceae/fisiologia , Cádmio/metabolismo , Clorofila/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas , Plântula , Zinco/metabolismo
18.
Int J Phytoremediation ; 13(10): 1024-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21972569

RESUMO

In this paper, the effects of indole-3-acetic acid (IAA) and/or ethylenediaminetetraacetic acid (EDTA) on lead uptake by a Zn/Cd hyperaccumulator Picris divaricata were studied. P. divaricata responded to Pb by better root system and increased biomass in presence of phytohormone IAA, which was able to reduce the inhibiting effects of Pb on transpiration without reducing the uptake of Pb The application of 100 microM IAA increased plant transpiration rate by about 20% and Pb concentration in leaves by about 37.3% as compared to treatment exposed to Pb alone. The enhanced phytoextraction efficiency could be attributed to the mechanisms played by IAA through alleviating Pb toxicity, creating better root system and plant biomass, promoting a higher transpiration rate as well as regulating the level of nutrient elements. On the contrary, inefficiency of phytoextraction was found with EDTA or the combination of IAA and EDTA probably because most Pb was in the form of Pb-EDTA complex which blocked the uptake by P. divaricata. The present study demonstrated that IAA was able to enhance the phytoextraction of Pb by Zn/Cd hyperaccumulator P. divaricata, providing a feasible method for the phytoremediation of polymetallic contaminated soils.


Assuntos
Asteraceae/metabolismo , Quelantes/farmacologia , Ácido Edético/farmacologia , Ácidos Indolacéticos/farmacologia , Chumbo/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Asteraceae/efeitos dos fármacos , Biomassa , Poluição Ambiental , Chumbo/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transpiração Vegetal/efeitos dos fármacos , Solo/análise , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
19.
J Hazard Mater ; 186(2-3): 1425-30, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21211902

RESUMO

Potentilla griffithii Hook is a newly found hyperaccumulator plant capable of high tolerance and accumulation of Zn and Cd. We investigated the interactive effects between Cd and Zn on accumulation and vacuolar sequestration in P. griffithii. Stimulatory effect of growth was noted at 0.2 mM Cd and 1.25 and 2.5 mM Zn tested. Accumulation of Zn and Cd in roots, petioles and leaves were increased significantly with addition of these metals individually. However, the Zn supplement decreased root Cd accumulation but increased the concentration of Cd in petioles and leaves. The results from sub-cellular distribution showed that up to 94% and 70% of the total Zn and Cd in the leaves were present in the protoplasts, and more than 90% Cd and Zn in the protoplasts were localized in the vacuoles. Nearly, 88% and 85% of total Cd and Zn were extracted in the cell sap of the leaves suggesting that most of the Cd and Zn in the leaves were available in soluble form. The present results indicate that Zn supplement significantly enhanced the petiole accumulation of Cd and further vacuolar sequestration plays an important role in tolerance, detoxification and hyperaccumulation of these metals in P. griffithii.


Assuntos
Cádmio/análise , Cádmio/toxicidade , Folhas de Planta/metabolismo , Potentilla/metabolismo , Zinco/análise , Zinco/toxicidade , Biomassa , Microscopia Eletrônica de Transmissão , Folhas de Planta/citologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Protoplastos/metabolismo , Frações Subcelulares/metabolismo , Vacúolos/metabolismo
20.
Chemosphere ; 82(3): 321-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21074242

RESUMO

The Zn/Cd hyperaccumulator Arabis paniculata is able to tolerate high level of Zn and Cd. To clarify the molecular basis of Zn and Cd tolerance, proteomic approaches were applied to identify proteins involved in Zn and Cd stress response in A. paniculata. Plants were exposed to both low and high Zn or Cd levels for 10 d. Proteins of leaves in each treatment were separated by 2-DE (two-dimensional electrophoresis). Nineteen differentially-expressed proteins upon Zn treatments and 18 proteins upon Cd treatments were observed. Seventeen out of 19 of Zn-responsive proteins and 16 out of 18 of Cd-responsive proteins were identified using MALDI-TOF/TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry). The most of identified proteins were known to function in energy metabolism, xenobiotic/antioxidant defense, cellular metabolism, protein metabolism, suggesting the responses of A. paniculata to Zn and Cd share similar pathway to certain extend. However, the different metal defense was also revealed between Zn and Cd treatment in A. paniculata. These results indicated that A. paniculata against to Zn stress mainly by enhancement of energy metabolism including auxin biosynthesis and protein metabolism to maintain plant growth and correct misfolded proteins. In the case of Cd, plants adopted antioxidative/xenobiotic defense and cellular metabolism to keep cellular redox homeostasis and metal-transportation under Cd stress.


Assuntos
Arabis/metabolismo , Cádmio/toxicidade , Proteínas de Plantas/metabolismo , Poluentes do Solo/toxicidade , Zinco/toxicidade , Adaptação Fisiológica , Arabis/efeitos dos fármacos , Proteoma/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA