Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358989

RESUMO

BACKGROUND: Fgf9 mutation was found in cleft palate patients. Our previous study indicated that Fgf9 promotes timely elevation of palate by regulating hyaluronic acid (HA) accumulation at embryonic day 13.5 (E13.5). HA is synthesized by hyaluronic acid synthases (HAS) isoforms 1, 2, or 3. However, how FGF9 regulates HA in palatogenesis is still unclear. METHODS: Using Ddx4-Cre mice, we generated the Fgf9-/- mouse model (with exon 2 deletion). Immunohistochemistry was used to detect the location and expression of HAS2 in WT and the Fgf9-/- palate at E13.5. We also predicted the association between Fgf9 and Has2 within the developing palate by performing a bioinformatics analysis. The expression of ß-catenin, HAS2, and TCF7L2 were verified by Western blotting after knockout of Fgf9. Rescue experiments were performed by ELISA in vitro. RESULTS: Fgf9-/- mice exhibited 100% penetrance of the cleft palate. A knockout of Fgf9 confirmed that HAS2 and TCF7L2 expression was positively correlated with FGF9. TCF7L2 binds to the Has2 promoter, exhibiting the high specificity predicted by JASPAR. Additionally, increased HA expression by BML-284, TCF-dependent agonist, was blocked in Fgf9-/- palate because of the significant decline in TCF7L2 expression. CONCLUSIONS: FGF9 promotes HAS2 expression via Wnt/ß-catenin/TCF7L2 pathway with TCF7L2 activating transcription of Has2 in the palate.


Assuntos
Fissura Palatina , beta Catenina , Camundongos , Animais , Fissura Palatina/genética , Ácido Hialurônico , Via de Sinalização Wnt , Fator 9 de Crescimento de Fibroblastos/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
2.
Front Physiol ; 12: 653040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959039

RESUMO

Cleft palate, a common global congenital malformation, occurs due to disturbances in palatal growth, elevation, contact, and fusion during palatogenesis. The Fibroblast growth factor 9 (FGF9) mutation has been discovered in humans with cleft lip and palate. Fgf9 is expressed in both the epithelium and mesenchyme, with temporospatial diversity during palatogenesis. However, the specific role of Fgf9 in palatogenesis has not been extensively discussed. Herein, we used Ddx4-Cre mice to generate an Fgf9-/- mouse model (with an Fgf9 exon 2 deletion) that exhibited a craniofacial syndrome involving a cleft palate and deficient mandibular size with 100% penetrance. A smaller palatal shelf size, delayed palatal elevation, and contact failure were investigated to be the intrinsic causes for cleft palate. Hyaluronic acid accumulation in the extracellular matrix (ECM) sharply decreased, while the cell density correspondingly increased in Fgf9-/- mice. Additionally, significant decreases in cell proliferation were discovered in not only the palatal epithelium and mesenchyme but also among cells in Meckel's cartilage and around the mandibular bone in Fgf9-/- mice. Serial sections of embryonic heads dissected at embryonic day 14.5 (E14.5) were subjected to craniofacial morphometric measurement. This highlighted the reduced oral volume owing to abnormal tongue size and descent, and insufficient mandibular size, which disturbed palatal elevation in Fgf9-/- mice. These results indicate that Fgf9 facilitates palatal growth and timely elevation by regulating cell proliferation and hyaluronic acid accumulation. Moreover, Fgf9 ensures that the palatal elevation process has adequate space by influencing tongue descent, tongue morphology, and mandibular growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA