Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Small ; : e2402024, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766989

RESUMO

The rapidly changing climate is exacerbating the environmental stress that negatively impacts crop health and yield. Timely sensing of plant response to stress is beneficial to timely adjust planting conditions, promoting the healthy growth of plants, and improving plant productivity. Hydrogen peroxide (H2O2) is an important molecule of signal transduction in plants. However, the common methods for detecting H2O2  in plants are associated with certain drawbacks, such as long extraction time, cumbersome steps, dependence on large instruments, and difficulty in realizing in-field sensing. Therefore, it is urgent to establish more efficient detection methods to realize the rapid detection of H2O2 content in plants. In this research, poly (methyl vinyl ether-alt-maleic acid) (PMVE/MA) hydrogel microneedle (MN) patch for rapid extraction of leaf sap are prepared, and the extraction mechanism of PEG-crosslinked PMVE/MA hydrogel MN patch is studied. A method of rapid detection of H2O2 content in plants based on MN patch with optical detection technology is constructed. The hydrogel MN patch can be used for timely H2O2 analysis. This application enables new opportunities in plant engineering, and can be extended to the safety and health monitoring of other plants and animals.

2.
Adv Sci (Weinh) ; : e2310069, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728620

RESUMO

In point-of-care diagnostics, the continuous monitoring of sweat constituents provides a window into individual's physiological state. For species like horses, with abundant sweat glands, sweat composition can serve as an early health indicator. Considering the salience of such metrics in the domain of high-value animal breeding, a sophisticated wearable sensor patch tailored is introduced for the dynamic assessment of equine sweat, offering insights into pH, potassium ion (K+), and temperature profiles during episodes of heat stress and under normal physiological conditions. The device integrates a laser-engraved graphene (LEG) sensing electrode array, a non-invasive iontophoretic module for stimulated sweat secretion, an adaptable signal processing unit, and an embedded wireless communication framework. Profiting from an admirable Truth Table capable of logical evaluation, the integrated system enabled the early and timely assessment for heat stress, with high accuracy, stability, and reproducibility. The sensor patch has been calibrated to align with the unique dermal and physiological contours of equine anatomy, thereby augmenting its applicability in practical settings. This real-time analysis tool for equine perspiration stands to revolutionize personalized health management approaches for high-value animals, marking a significant stride in the integration of smart technologies within the agricultural sector.

3.
ACS Appl Mater Interfaces ; 16(19): 25333-25342, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696706

RESUMO

Mycotoxin contamination in food and the environment seriously harms human health. Sensitive and timely detection of mycotoxins is crucial. Here, we report a dual-functional hybrid membrane with absorptivity and responsiveness for fluorescent-quantitative detection of mycotoxin aflatoxin B1 (AFB1). A biomineralization-inspired and microwave-accelerated fabrication method was established to prepare a hybrid membrane with a metal-organic framework (MOF) loaded in high density. The MOF presented high efficiency in capturing AFB1 and showed fluorescence intensity alteration simultaneously, enabling a dual adsorption-response mode. Deriving from the inherent porous structure of the hybrid membrane and the absorptive/responsive ability of the loaded MOF, a filtration-enhanced detection mode was elaborated to provide a 1.67-fold signal increase compared with the conventional soaking method. Therefore, the hybrid membrane exhibited a rapid response time of 10 min and a low detection limit of 0.757 ng mL-1, superior to most analogues in rapidity and sensitivity. The hybrid membrane also presented superior specificity, reproducibility, and anti-interference ability and even performed well in extreme environments such as strong acid or alkaline, satisfying the practical requirements for facile and in-field detection. Therefore, the membrane had strong applicability in chicken feed samples, with a detection recovery between 70.6% and 101%. The hybrid membrane should have significant prospects in the rapid and in-field inspection of mycotoxins for agriculture and food.


Assuntos
Aflatoxina B1 , Filtração , Estruturas Metalorgânicas , Micro-Ondas , Aflatoxina B1/análise , Aflatoxina B1/isolamento & purificação , Aflatoxina B1/química , Estruturas Metalorgânicas/química , Contaminação de Alimentos/análise , Animais , Galinhas , Membranas Artificiais , Limite de Detecção , Adsorção
4.
Adv Mater ; : e2401151, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558183

RESUMO

Natural material-based hydrogels are considered ideal candidates for constructing robust bio-interfaces due to their environmentally sustainable nature and biocompatibility. However, these hydrogels often encounter limitations such as weak mechanical strength, low water resistance, and poor ionic conductivity. Here, inspired by the role of natural moisturizing factor (NMF) in skin, a straightforward yet versatile strategy is proposed for fabricating all-natural ionic biogels that exhibit high resilience, ionic conductivity, resistance to dehydration, and complete degradability, without necessitating any chemical modification. A well-balanced combination of gelatin and sodium pyrrolidone carboxylic acid (an NMF compound) gives rise to a significant enhancement in the mechanical strength, ionic conductivity, and water retention capacity of the biogel compared to pure gelatin hydrogel. The biogel manifests temperature-controlled reversible fluid-gel transition properties attributed to the triple-helix junctions of gelatin, which enables in situ gelation on diverse substrates, thereby ensuring conformal contact and dynamic compliance with curved surfaces. Due to its salutary properties, the biogel can serve as an effective and biocompatible interface for high-quality and long-term electrophysiological signal recording. These findings provide a general and scalable approach for designing natural material-based hydrogels with tailored functionalities to meet diverse application needs.

5.
Adv Sci (Weinh) ; : e2400207, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655847

RESUMO

Wearable sensors hold immense potential for real-time and non-destructive sensing of volatile organic compounds (VOCs), requiring both efficient sensing performance and robust mechanical properties. However, conventional colorimetric sensor arrays, acting as artificial olfactory systems for highly selective VOC profiling, often fail to meet these requirements simultaneously. Here, a high-performance wearable sensor array for VOC visual detection is proposed by extrusion printing of hybrid inks containing surface-functionalized sensing materials. Surface-modified hydrophobic polydimethylsiloxane (PDMS) improves the humidity resistance and VOC sensitivity of PDMS-coated dye/metal-organic frameworks (MOFs) composites. It also enhances their dispersion within liquid PDMS matrix, thereby promoting the hybrid liquid as high-quality extrusion-printing inks. The inks enable direct and precise printing on diverse substrates, forming a uniform and high particle-loading (70 wt%) film. The printed film on a flexible PDMS substrate demonstrates satisfactory flexibility and stretchability while retaining excellent sensing performance from dye/MOFs@PDMS particles. Further, the printed sensor array exhibits enhanced sensitivity to sub-ppm VOC levels, remarkable resistance to high relative humidity (RH) of 90%, and the differentiation ability for eight distinct VOCs. Finally, the wearable sensor proves practical by in situ monitoring of wheat scab-related VOC biomarkers. This study presents a versatile strategy for designing effective wearable gas sensors with widespread applications.

6.
Cyborg Bionic Syst ; 5: 0109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680536

RESUMO

Manipulating cells at a small scale is widely acknowledged as a complex and challenging task, especially when it comes to cell grasping and transportation. Various precise methods have been developed to remotely control the movement of microrobots. However, the manipulation of micro-objects necessitates the use of end-effectors. This paper presents a study on the control of movement and grasping operations of a magnetic microrobot, utilizing only 3 pairs of electromagnetic coils. A specially designed microgripper is employed on the microrobot for efficient cell grasping and transportation. To ensure precise grasping, a bending deformation model of the microgripper is formulated and subsequently validated. To achieve precise and reliable transportation of cells to specific positions, an approach that combines an extended Kalman filter with a model predictive control method is adopted to accomplish the trajectory tracking task. Through experiments, we observe that by applying the proposed control strategy, the mean absolute error of path tracking is found to be less than 0.155 mm. Remarkably, this value accounts for only 1.55% of the microrobot's size, demonstrating the efficacy and accuracy of our control strategy. Furthermore, an experiment involving the grasping and transportation of a zebrafish embryonic cell (diameter: 800 µm) is successfully conducted. The results of this experiment not only validate the precision and effectiveness of the proposed microrobot and its associated models but also highlight its tremendous potential for cell manipulation in vitro and in vivo.

7.
Foods ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38472906

RESUMO

Artificial scent screening systems, inspired by the mammalian olfactory system, hold promise for fruit ripeness detection, but their commercialization is limited by low sensitivity or pattern recognition inaccuracy. This study presents a portable fruit ripeness prediction system based on colorimetric sensing combinatorics and deep convolutional neural networks (DCNN) to accurately identify fruit ripeness. Using the gas chromatography-mass spectrometry (GC-MS) method, the study discerned the distinctive gases emitted by mango, peach, and banana across various ripening stages. The colorimetric sensing combinatorics utilized 25 dyes sensitive to fruit volatile gases, generating a distinct scent fingerprint through cross-reactivity to diverse concentrations and varieties of gases. The unique scent fingerprints can be identified using DCNN. After capturing colorimetric sensor image data, the densely connected convolutional network (DenseNet) was employed, achieving an impressive accuracy rate of 97.39% on the validation set and 82.20% on the test set in assessing fruit ripeness. This fruit ripeness prediction system, coupled with a DCNN, successfully addresses the issues of complex pattern recognition and low identification accuracy. Overall, this innovative tool exhibits high accuracy, non-destructiveness, practical applicability, convenience, and low cost, making it worth considering and developing for fruit ripeness detection.

8.
Biosens Bioelectron ; 250: 116066, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310731

RESUMO

Microneedle (MN) technology has been extensively studied for its advantages of minimal invasiveness and user-friendliness. Notably, hydrogel microneedles (HMNs) have garnered considerable attention for biofluid extraction due to its high swelling properties and biocompatibility. This review provides a comprehensive overview of definition, materials, and fabrication methods associated with HMNs. The extraction mechanisms and optimization strategies for enhancing extraction efficiency are summarized. Moreover, particular emphasis is placed on HMN-based biofluid extraction and detection in the domains of food and agriculture, encompassing the detection of small molecules, nucleic acids, and other relevant analytes. Finally, current challenges and possible solutions associated with HMN-based biofluid extraction are discussed.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Sistemas de Liberação de Medicamentos/métodos , Agulhas , Microinjeções/métodos , Agricultura
9.
Nanomicro Lett ; 16(1): 49, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087121

RESUMO

In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases. Currently, implantable electrochemical microsensors have emerged as a prominent area of research. These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration. They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner, characterized by their bloodless, painless features, and exceptional performance. The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts. This review commenced with a comprehensive discussion of the construction of microsensors, including the materials utilized and the methods employed for fabrication. Following this, we proceeded to explore the various implantation technologies employed for electrochemical microsensors. In addition, a comprehensive overview was provided of the various applications of implantable electrochemical microsensors, specifically in the monitoring of diseases and the investigation of disease mechanisms. Lastly, a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.

10.
Nano Lett ; 23(24): 11850-11859, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38051785

RESUMO

Cardiac oxidative stress is a significant phenotype of myocardial infarction disease, a leading cause of global health threat. There is an urgent need to develop innovative therapies. Nanosized extracellular vesicle (nEV)-based therapy shows promise, yet real-time monitoring of cardiomyocyte responses to nEVs remains a challenge. In this study, a dynamic and label-free cardiomyocyte biosensing system using microelectrode arrays (MEAs) was constructed. Cardiomyocytes were cultured on MEA devices for electrophysiological signal detection and treated with nEVs from E. coli, gardenia, HEK293 cells, and mesenchymal stem cells (MSC), respectively. E. coli-nEVs and gardenia-nEVs induced severe paroxysmal fibrillation, revealing distinct biochemical communication compared to MSC-nEVs. Principal component analysis identified variations and correlations between nEV types. MSC-nEVs enhanced recovery without inducing arrhythmias in a H2O2-induced oxidative stress injury model. This study establishes a fundamental platform for assessing biochemical communication between nEVs and cardiomyocytes, offering new avenues for understanding nEVs' functions in the cardiovascular system.


Assuntos
Peróxido de Hidrogênio , Miócitos Cardíacos , Humanos , Células HEK293 , Peróxido de Hidrogênio/metabolismo , Escherichia coli , Arritmias Cardíacas , Estresse Oxidativo
11.
Nat Commun ; 14(1): 5015, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596259

RESUMO

Wet-chemical synthesis via heating bulk solution is powerful to obtain nanomaterials. However, it still suffers from limited reaction rate, controllability, and massive consumption of energy/reactants, particularly for the synthesis on specific substrates. Herein, we present an innovative wet-interfacial Joule heating (WIJH) approach to synthesize various nanomaterials in a sub-second ultrafast, programmable, and energy/reactant-saving manner. In the WIJH, Joule heat generated by the graphene film (GF) is confined at the substrate-solution interface. Accompanied by instantaneous evaporation of the solvent, the temperature is steeply improved and the precursors are concentrated, thereby synergistically accelerating and controlling the nucleation and growth of nanomaterials on the substrate. WIJH leads to a record high crystallization rate of HKUST-1 (~1.97 µm s-1), an ultralow energy cost (9.55 × 10-6 kWh cm-2) and low precursor concentrations, which are up to 5 orders of magnitude faster, -6 and -2 orders of magnitude lower than traditional methods, respectively. Moreover, WIJH could handily customize the products' amount, size, and morphology via programming the electrified procedures. The as-prepared HKUST-1/GF enables the Joule-heating-controllable and low-energy-required capture and liberation towards CO2. This study opens up a new methodology towards the superefficient synthesis of nanomaterials and solvent-involved Joule heating.

12.
Food Chem ; 429: 136822, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450994

RESUMO

Cyclodextrins, with their unparalleled attributes of eco-friendliness, natural abundance, versatile utility, and facile functionalization, make a paramount contribution to the field of molecular imprinting. Leveraging the unique properties of cyclodextrins in molecularly imprinted polymers synthesis has revolutionized the performance of molecularly imprinted polymers, resulting in enhanced adsorption selectivity, capacity, and rapid extraction of pesticides, while also circumventing conventional limitations. As the concern for food quality and safety continues to grow, the need for standard analytical methods to detect pesticides in food and environmental samples has become paramount. Cyclodextrins, being non-toxic and biodegradable, present an attractive option for greener reagents in imprinting polymers that can also ensure environmental safety post-application. This review provides a comprehensive summary of the significance of cyclodextrins in molecular imprinting for pesticide detection in food and environmental samples. The recent advancements in the synthesis and application of molecularly imprinted polymers using cyclodextrins have been critically analyzed. Furthermore, the current limitations have been meticulously examined, and potential opportunities for greenification with cyclodextrin applications in this field have been discussed. By harnessing the advantages of cyclodextrins in molecular imprinting, it is possible to develop highly selective and efficient methods for detecting pesticides in food and environmental samples while also addressing the challenges of sustainability and environmental impact.


Assuntos
Ciclodextrinas , Impressão Molecular , Praguicidas , Polímeros Molecularmente Impressos , Extração em Fase Sólida
13.
Adv Sci (Weinh) ; 10(23): e2207651, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37310418

RESUMO

Chemiluminescence (CL) imaging, as an excitation-free technique, exhibits a markedly improved signal-to-noise ratio (SNR) owing to the absence of an excitation light source and autofluorescence interference. However, conventional chemiluminescence imaging generally focuses on the visible and first near-infrared (NIR-I) regions, which hinders high-performance biological imaging due to strong tissue scattering and absorption. To address the issue, self-luminescent NIR-II CL nanoprobes with a second near-infrared (NIR-II) luminescence in the presence of hydrogen peroxide are rationally designed. A cascade energy transfer, including chemiluminescence resonance energy transfer (CRET) from the chemiluminescent substrate to NIR-I organic molecules and Förster resonance energy transfer (FRET) from NIR-I organic molecules to NIR-II organic molecules, occurs in the nanoprobes, contributing to NIR-II light with great efficiency and good tissue penetration depth. Based on excellent selectivity, high sensitivity to hydrogen peroxide, and long-lasting luminescence performance, the NIR-II CL nanoprobes are applied to detect inflammation in mice, showing a 7.4-fold enhancement in SNR compared with that of fluorescence.


Assuntos
Luminescência , Nanopartículas , Animais , Camundongos , Nanopartículas/química , Peróxido de Hidrogênio , Diagnóstico por Imagem , Fluorescência
14.
ACS Appl Mater Interfaces ; 15(22): 27034-27045, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37232292

RESUMO

Ionic current measurement has been the dominant signaling strategy in nanochannel-based sensors. However, the direct probing of the capture of small molecules is still challenging, and the sensing potential of the outer surface of nanochannels is always ignored. Here, we report the fabrication of an integrated nanochannel electrode (INCE) with nanoporous gold layers modified on two sides of nanochannels, and its application for small-molecule analysis was explored. Metal-organic frameworks (MOFs) were decorated inside and outside of nanochannels, enabling the reduction of pore size to several nanometers, which is among the thickness range of the electric double layer for confined ion diffusion. Combined with excellent adsorption characteristics of MOFs, the developed nanochannel sensor successfully constructed the internal nanoconfined space that could directly capture small molecules and instantly generate a current signal. The contribution of the outer surface and the internal nanoconfined space to diffusion suppression to electrochemical probes was investigated. We found that the constructed nanoelectrochemical cell was sensitive in both the inner channel and the outer surface, signifying a novel sensing mode with integration of the internal nanoconfined space and the outer surface of nanochannels. The MOF/INCE sensor showed excellent performance toward tetracycline (TC) with a detection limit of 0.1 ng·mL-1. Subsequently, sensitive and quantitative detection of TC down to 0.5 µg·kg-1 was achieved in actual chicken samples. This work may open up a new model of nanoelectrochemistry and provide an alternative solution in the field of nanopore analysis for small molecules.

15.
Front Plant Sci ; 14: 1162435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180389

RESUMO

Plant phenotyping and production management are emerging fields to facilitate Genetics, Environment, & Management (GEM) research and provide production guidance. Precision indoor farming systems (PIFS), vertical farms with artificial light (aka plant factories) in particular, have long been suitable production scenes due to the advantages of efficient land utilization and year-round cultivation. In this study, a mobile robotics platform (MRP) within a commercial plant factory has been developed to dynamically understand plant growth and provide data support for growth model construction and production management by periodical monitoring of individual strawberry plants and fruit. Yield monitoring, where yield = the total number of ripe strawberry fruit detected, is a critical task to provide information on plant phenotyping. The MRP consists of an autonomous mobile robot (AMR) and a multilayer perception robot (MPR), i.e., MRP = the MPR installed on top of the AMR. The AMR is capable of traveling along the aisles between plant growing rows. The MPR consists of a data acquisition module that can be raised to the height of any plant growing tier of each row by a lifting module. Adding AprilTag observations (captured by a monocular camera) into the inertial navigation system to form an ATI navigation system has enhanced the MRP navigation within the repetitive and narrow physical structure of a plant factory to capture and correlate the growth and position information of each individual strawberry plant. The MRP performed robustly at various traveling speeds with a positioning accuracy of 13.0 mm. The temporal-spatial yield monitoring within a whole plant factory can be achieved to guide farmers to harvest strawberries on schedule through the MRP's periodical inspection. The yield monitoring performance was found to have an error rate of 6.26% when the plants were inspected at a constant MRP traveling speed of 0.2 m/s. The MRP's functions are expected to be transferable and expandable to other crop production monitoring and cultural tasks.

16.
ACS Appl Mater Interfaces ; 15(15): 19199-19208, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37022351

RESUMO

Leaf capacitance can reflect plant water content. However, the rigid electrodes used in leaf capacitance monitoring may affect plant health status. Herein, we report a self-adhesive, water-proof, and gas-permeable electrode fabricated by in situ electrospinning of a polylactic acid nanofiber membrane (PLANFM) on a leaf, spraying a layer of the carbon nanotube membrane (CNTM) on PLANFM, and in situ electrospinning of PLANFM on CNTM. The electrodes could be self-adhered to the leaf via electrostatic adhesion due to the charges on PLANFM and the leaf, thus forming a capacitance sensor. Compared with the electrode fabricated by a transferring approach, the in situ fabricated one did not show obvious influence on plant physiological parameters. On that basis, a wireless leaf capacitance sensing system was developed, and the change of plant water status was detected in the first day of drought stress, which was much earlier than direct observation of the plant appearance. This work paved a useful way to realize noninvasive and real-time detection of stress using plant wearable electronics.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Cimentos de Resina , Água , Eletrônica , Eletrodos
17.
Small ; 19(35): e2300900, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37096928

RESUMO

Nanochannel-based confinement effect is a fascinating signal transduction strategy for high-performance sensing, but only size confinement is focused on while other confinement effects are unexplored. Here, a highly integrated nanochannel-electrodes chip (INEC) is created and a size/volume-dual-confinement enzyme catalysis model for rapid and sensitive bacteria detection is developed. The INEC, by directly sandwiching a nanochannel chip (60 µm in thickness) in nanoporous gold layers, creates a micro-droplet-based confinement electrochemical cell (CEC). The size confinement of nanochannel promotes the urease catalysis efficiency to generate more ions, while the volume confinement of CEC significantly enriches ions by restricting diffusion. As a result, the INEC-based dual-confinement effects benefit a synergetic enhancement of the catalytic signal. A 11-times ion-strength-based impedance response is obtained within just 1 min when compared to the relevant open system. Combining this novel nanoconfinement effects with nanofiltration of INEC, a separation/signal amplification-integrated sensing strategy is further developed for Salmonella typhimurium detection. The biosensor realizes facile, rapid (<20 min), and specific signal readout with a detection limit of 9 CFU mL-1 in culturing solution, superior to most reports. This work may create a new paradigm for studying nanoconfined processes and contribute a new signal transduction technique for trace analysis application.


Assuntos
Técnicas Biossensoriais , Espaços Confinados , Impedância Elétrica , Eletrodos , Salmonella , Catálise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas
18.
ACS Appl Mater Interfaces ; 15(13): 17222-17232, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36877589

RESUMO

Balancing the trade-off between permeability and selectivity while realizing multiple sieving from complex matrices remains as bottlenecks for membrane-based separation. Here, a unique nanolaminate film of transition metal carbide (MXene) nanosheets intercalated by metal-organic framework (MOF) nanoparticles was developed. The intercalation of MOFs modulated the interlayer spacing and created nanochannels between MXene nanosheets, promoting a fast water permeance of 231 L m-2 h-1 bar-1. The nanochannel endowed a 10-fold lengthened diffusion path and the nanoconfinement effect to enhance the collision probability, establishing an adsorption model with a separation performance above 99% to chemicals and nanoparticles. In addition to the remained rejection function of nanosheets, the film integrated dual separation mechanisms of both size exclusion and selective adsorption, enabling a rapid and selective liquid phase separation paradigm that performs simultaneous multiple chemicals and nanoparticles sieving. The unique MXenes-MOF nanolaminate film and multiple sieving concepts are expected to pave a promising way toward highly efficient membranes and additional water treatment applications.

19.
ACS Appl Mater Interfaces ; 15(9): 12560-12569, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847242

RESUMO

Tunable terahertz (THz) photonic devices are imperative in a wide range of applications ranging from THz signal modulation to molecular sensing. One of the currently prevailing methods is based on arrays of metallic or dielectric resonators integrated with functional materials in response to an external stimulus, in which for the purpose of sensing the external stimuli may introduce inadvertent undesirable effects into the target samples to be measured. Here we developed an alternative approach by postprocessing nanothickness macro-assembled graphene (nMAG) films with widely tunable THz conductivity, enabling versatile solid-state THz devices and sensors, showing multifunctional nMAG-based applications. The THz conductivities of free-standing nMAGs showed a broad range from 1.2 × 103 S/m in reduced graphene oxide before annealing to 4.0 × 106 S/m in a nMAG film annealed at 2800 °C. We fabricated nMAG/dielectric/metal and nMAG/dielectric/nMAG THz Salisbury absorbers with broad reflectance ranging from 0% to 80%. The highly conductive nMAG films enabled THz metasurfaces for sensing applications. Taking advantage of the resonant field enhancement arising from the plasmonic metasurface structures and the strong interactions between analyte molecules and nMAG films, we successfully detected diphenylamine with a limit of detection of 4.2 pg. Those wafer-scale nMAG films present promising potential in high-performance THz electronics, photonics, and sensors.

20.
Adv Colloid Interface Sci ; 311: 102828, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36587470

RESUMO

Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.


Assuntos
Técnicas Biossensoriais , Grafite , Nanoestruturas , Nanotubos de Carbono , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Grafite/química , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA