Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 9: e11860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434649

RESUMO

BACKGROUND: Photosynthesis is a key process in plants that is compromised by the oxygenase activity of Rubisco, which leads to the production of toxic compound phosphoglycolate that is catabolized by photorespiratory pathway. Transformation of plants with photorespiratory bypasses have been shown to reduce photorespiration and enhance plant biomass. Interestingly, engineering of a single gene from such photorespiratory bypasses has also improved photosynthesis and plant productivity. Although single gene transformations may not completely reduce photorespiration, increases in plant biomass accumulation have still been observed indicating an alternative role in regulating different metabolic processes. Therefore, the current study was aimed at evaluating the underlying mechanism (s) associated with the effects of introducing a single cyanobacterial glycolate decarboxylation pathway gene on photosynthesis and plant performance. METHODS: Transgenic Arabidopsis thaliana plants (GD, HD, OX) expressing independently cyanobacterial decarboxylation pathway genes i.e., glycolate dehydrogenase, hydroxyacid dehydrogenase, and oxalate decarboxylase, respectively, were utilized. Photosynthetic, fluorescence related, and growth parameters were analyzed. Additionally, transcriptomic analysis of GD transgenic plants was also performed. RESULTS: The GD plants exhibited a significant increase (16%) in net photosynthesis rate while both HD and OX plants showed a non-significant (11%) increase as compared to wild type plants (WT). The stomatal conductance was significantly higher (24%) in GD and HD plants than the WT plants. The quantum efficiencies of photosystem II, carbon dioxide assimilation and the chlorophyll fluorescence-based photosynthetic electron transport rate were also higher than WT plants. The OX plants displayed significant reductions in the rate of photorespiration relative to gross photosynthesis and increase in the ratio of the photosynthetic electron flow attributable to carboxylation reactions over that attributable to oxygenation reactions. GD, HD and OX plants accumulated significantly higher biomass and seed weight. Soluble sugars were significantly increased in GD and HD plants, while the starch levels were higher in all transgenic plants. The transcriptomic analysis of GD plants revealed 650 up-regulated genes mainly related to photosynthesis, photorespiratory pathway, sucrose metabolism, chlorophyll biosynthesis and glutathione metabolism. CONCLUSION: This study revealed the potential of introduced cyanobacterial pathway genes to enhance photosynthetic and growth-related parameters. The upregulation of genes related to different pathways provided evidence of the underlying mechanisms involved particularly in GD plants. However, transcriptomic profiling of HD and OX plants can further help to identify other potential mechanisms involved in improved plant productivity.

2.
J Exp Bot ; 72(5): 1962-1977, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33315099

RESUMO

Whilst a range of strategies have been proposed for enhancing crop productivity, many recent studies have focused primarily on enhancing leaf photosynthesis under current atmospheric CO2 concentrations. Given that the atmospheric CO2 concentration is likely to increase significantly in the foreseeable future, an alternative/complementary strategy might be to exploit any variability in the enhancement of growth/yield and photosynthesis at higher CO2 concentrations. To explore this, we investigated the responses of a diverse range of wild and cultivated ryegrass genotypes, with contrasting geographical origins, to ambient and elevated CO2 concentrations and examined what genetically tractable plant trait(s) might be targeted by plant breeders for future yield enhancements. We found substantial ~7-fold intraspecific variations in biomass productivity among the different genotypes at both CO2 levels, which were related primarily to differences in tillering/leaf area, with only small differences due to leaf photosynthesis. Interestingly, the ranking of genotypes in terms of their response to both CO2 concentrations was similar. However, as expected, estimates of whole-plant photosynthesis were strongly correlated with plant productivity. Our results suggest that greater yield gains under elevated CO2 are likely through the exploitation of genetic differences in tillering and leaf area rather than focusing solely on improving leaf photosynthesis.


Assuntos
Lolium , Biomassa , Dióxido de Carbono , Lolium/genética , Fotossíntese , Folhas de Planta
3.
Planta ; 251(2): 52, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31950281

RESUMO

MAIN CONCLUSION: Our study demonstrated that the species respond non-linearly to increases in CO2 concentration when exposed to decadal changes in CO2, representing the year 1987, 2025, 2051, and 2070, respectively. There are several lines of evidence suggesting that the vast majority of C3 plants respond to elevated atmospheric CO2 by decreasing their stomatal conductance (gs). However, in the majority of CO2 enrichment studies, the response to elevated CO2 are tested between plants grown under ambient (380-420 ppm) and high (538-680 ppm) CO2 concentrations and measured usually at single time points in a diurnal cycle. We investigated gs responses to simulated decadal increments in CO2 predicted over the next 4 decades and tested how measurements of gs may differ when two alternative sampling methods are employed (infrared gas analyzer [IRGA] vs. leaf porometer). We exposed Populus tremula, Popolus tremuloides and Sambucus racemosa to four different CO2 concentrations over 126 days in experimental growth chambers at 350, 420, 490 and 560 ppm CO2; representing the years 1987, 2025, 2051, and 2070, respectively (RCP4.5 scenario). Our study demonstrated that the species respond non-linearly to increases in CO2 concentration when exposed to decadal changes in CO2. Under natural conditions, maximum operational gs is often reached in the late morning to early afternoon, with a mid-day depression around noon. However, we showed that the daily maximum gs can, in some species, shift later into the day when plants are exposed to only small increases (70 ppm) in CO2. A non-linear decreases in gs and a shifting diurnal stomatal behavior under elevated CO2, could affect the long-term daily water and carbon budget of many plants in the future, and therefore alter soil-plant-atmospheric processes.


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Fisiologia/métodos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/efeitos da radiação , Raios Infravermelhos , Luz , Estômatos de Plantas/efeitos da radiação , Análise de Regressão
4.
Sci Adv ; 5(12): eaax7906, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31844666

RESUMO

Intrinsic water use efficiency (iWUE), defined as the ratio of photosynthesis to stomatal conductance, is a key variable in plant physiology and ecology. Yet, how rising atmospheric CO2 concentration affects iWUE at broad species and ecosystem scales is poorly understood. In a field-based study of 244 woody angiosperm species across eight biomes over the past 25 years of increasing atmospheric CO2 (~45 ppm), we show that iWUE in evergreen species has increased more rapidly than in deciduous species. Specifically, the difference in iWUE gain between evergreen and deciduous taxa diverges along a mean annual temperature gradient from tropical to boreal forests and follows similar observed trends in leaf functional traits such as leaf mass per area. Synthesis of multiple lines of evidence supports our findings. This study provides timely insights into the impact of Anthropocene climate change on forest ecosystems and will aid the development of next-generation trait-based vegetation models.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Ecossistema , Água/metabolismo , Isótopos de Carbono/química , Florestas , Fotossíntese/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Temperatura , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/química
5.
Plant Physiol ; 181(3): 1148-1162, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31484680

RESUMO

The fossil record and models of atmospheric concentrations of O2 and CO2 suggest that past shifts in plant ecological dominance often coincided with dramatic changes in Earth's atmospheric composition. This study tested the effects of past changes in atmospheric composition on the photosynthetic physiology of a limited range of early-diverging angiosperms (eight), gymnosperms (three), and ferns (two). We performed physiological measurements on all species and used the results to parameterize simulations of their photosynthetic paleophysiology using three independent modeling approaches. Unique physiological attributes were identified for the three evolutionary groups: angiosperm taxa displayed significantly higher mesophyll conductance (g m), yet their stomatal conductance (g s) was lower than that of ferns. Gymnosperm taxa displayed low g s and g m, but they partially offset their significant diffusional limitations on photosynthesis through their higher maximum Rubisco carboxylation rate. Despite their high total conductance to CO2, fern taxa lacked an optimized control of g s, which was reflected in their low intrinsic water use efficiency. Simulations of the photosynthetic physiology of ferns, angiosperms, and gymnosperms through Earth's history demonstrated that past fluctuations in O2 and CO2 concentrations may have resulted in significant shifts in the relative competitiveness of the three evolutionary groups. Although preliminary because of limited species sampling, these findings hint at a potential mechanistic basis for the observed broad temporal correlation between atmospheric change and shifts in plant evolutionary group-level richness observed in the fossil record and are presented as a framework to be tested with paleophotosynthetic proxies and through increased species sampling.


Assuntos
Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Cycadopsida/metabolismo , Gleiquênias/metabolismo , Fósseis , Magnoliopsida/metabolismo , Células do Mesofilo/metabolismo , Oxigênio/metabolismo , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Água
6.
Front Plant Sci ; 10: 558, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134112

RESUMO

Stomatal conductance (g s) in terrestrial vegetation regulates the uptake of atmospheric carbon dioxide for photosynthesis and water loss through transpiration, closely linking the biosphere and atmosphere and influencing climate. Yet, the range and pattern of g s in plants from natural ecosystems across broad geographic, climatic, and taxonomic ranges remains poorly quantified. Furthermore, attempts to characterize g s on such scales have predominantly relied upon meta-analyses compiling data from many different studies. This approach may be inherently problematic as it combines data collected using unstandardized protocols, sometimes over decadal time spans, and from different habitat groups. Using a standardized protocol, we measured leaf-level g s using porometry in 218 C3 woody angiosperm species in natural ecosystems representing seven bioclimatic zones. The resulting dataset of 4273 g s measurements, which we call STraits (Stomatal Traits), was used to determine patterns in maximum g s (g smax) across bioclimatic zones and whether there was similarity in the mean g smax of C3 woody angiosperms across ecosystem types. We also tested for differential g smax in two broadly defined habitat groups - open-canopy and understory-subcanopy - within and across bioclimatic zones. We found strong convergence in mean g smax of C3 woody angiosperms in the understory-subcanopy habitats across six bioclimatic zones, but not in open-canopy habitats. Mean g smax in open-canopy habitats (266 ± 100 mmol m-2 s-1) was significantly higher than in understory-subcanopy habitats (233 ± 86 mmol m-2 s-1). There was also a central tendency in the overall dataset to operate toward a g smax of ∼250 mmol m-2 s-1. We suggest that the observed convergence in mean g smax of C3 woody angiosperms in the understory-subcanopy is due to a buffering of g smax against macroclimate effects which will lead to differential response of C3 woody angiosperm vegetation in these two habitats to future global change. Therefore, it will be important for future studies of g smax to categorize vegetation according to habitat group.

7.
Front Plant Sci ; 7: 1368, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695464

RESUMO

In order to be successful in a given environment a plant should invest in a vein network and stomatal distribution that ensures balance between both water supply and demand. Vein density (Dv) and stomatal density (SD) have been shown to be strongly positively correlated in response to a range of environmental variables in more recently evolved plant species, but the extent of this relationship has not been confirmed in earlier diverging plant lineages. In order to examine the effect of a changing atmosphere on the relationship between Dv and SD, five early-diverging plant species representing two different reproductive plant grades were grown for 7 months in a palaeo-treatment comprising an O2:CO2 ratio that has occurred multiple times throughout plant evolutionary history. Results show a range of species-specific Dv and SD responses to the palaeo-treatment, however, we show that the strong relationship between Dv and SD under modern ambient atmospheric composition is maintained following exposure to the palaeo-treatment. This suggests strong inter-specific co-ordination between vein and stomatal traits for our study species even under relatively extreme environmental change. This co-ordination supports existing plant function proxies that use the distance between vein endings and stomata (Dm) to infer plant palaeo-physiology.

8.
New Phytol ; 209(1): 94-103, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26230251

RESUMO

Understanding the drivers of geological-scale patterns in plant macroevolution is limited by a hesitancy to use measurable traits of fossils to infer palaeoecophysiological function. Here, scaling relationships between morphological traits including maximum theoretical stomatal conductance (gmax ) and leaf vein density (Dv ) and physiological measurements including operational stomatal conductance (gop ), saturated (Asat ) and maximum (Amax ) assimilation rates were investigated for 18 extant taxa in order to improve understanding of angiosperm diversification in the Cretaceous. Our study demonstrated significant relationships between gop , gmax and Dv that together can be used to estimate gas exchange and the photosynthetic capacities of fossils. We showed that acquisition of high gmax in angiosperms conferred a competitive advantage over gymnosperms by increasing the dynamic range (plasticity) of their gas exchange and expanding their ecophysiological niche space. We suggest that species with a high gmax (> 1400 mmol m(-2) s(-1) ) would have been capable of maintaining a high Amax as the atmospheric CO2 declined through the Cretaceous, whereas gymnosperms with a low gmax would experience severe photosynthetic penalty. Expansion of the ecophysiological niche space in angiosperms, afforded by coordinated evolution of high gmax , Dv and increased plasticity in gop , adds further functional insights into the mechanisms driving angiosperm speciation.


Assuntos
Cycadopsida/genética , Fósseis , Magnoliopsida/genética , Transpiração Vegetal , Evolução Biológica , Cycadopsida/anatomia & histologia , Cycadopsida/fisiologia , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Fenótipo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia
9.
Plant Methods ; 11: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26396588

RESUMO

BACKGROUND: Plant growth chambers provide a controlled environment to analyse the effects of environmental parameters (light, temperature, atmospheric gas composition etc.) on plant function. However, it has been shown that a 'chamber effect' may exist whereby results observed are not due to an experimental treatment but to inconspicuous differences in supposedly identical chambers. In this study, Vicia faba L. 'Aquadulce Claudia' (broad bean) plants were grown in eight walk-in chambers to establish if a chamber effect existed, and if so, what plant traits are best for detecting such an effect. A range of techniques were used to measure differences between chamber plants, including chlorophyll fluorescence measurements, gas exchange analysis, biomass, reproductive yield, anatomical traits and leaf stable carbon isotopes. RESULTS AND DISCUSSION: Four of the eight chambers exhibited a chamber effect. In particular, we identified two types of chamber effect which we term 'resolvable' or 'unresolved'; a resolvable chamber effect is caused by malfunctioning components of a chamber and an unresolved chamber effect is caused by unknown factors that can only be mitigated by appropriate experimental design and sufficient replication. Not all measured plant traits were able to detect a chamber effect and no single trait was capable of detecting all chamber effects. Fresh weight and flower count detected a chamber effect in three chambers, stable carbon isotopes (δ(13)C) and net rate CO2 assimilation (An) identified a chamber effect in two chambers, stomatal conductance (gs) and total performance index detected an effect only in one chamber. CONCLUSION: (1) Chamber effects can be adequately detected by fresh weight measurements and flower counts on Vicia faba plants. These methods were the most effective in terms of detection and most efficient in terms of time. (2) δ(13)C, gs and An measurements help distinguish between resolvable and unresolved chamber effects. (3) Unresolved chamber effects require experimental unit replication while resolvable chamber effects require investigation, repair and retesting in advance of initiating further experiments.

10.
Planta ; 232(2): 523-31, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20490542

RESUMO

A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.


Assuntos
Respiração Celular/fisiologia , Transporte de Elétrons/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Zantedeschia/metabolismo , Zantedeschia/fisiologia , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA