RESUMO
The emergence of SARS-CoV-2 mutations poses significant challenges to diagnostic tests, as these mutations can reduce the sensitivity of commonly used RT-PCR assays. Therefore, there is a need to design diagnostic assays with multiple targets to enhance sensitivity. In this study, we identified a novel diagnostic target, the nsp10 gene, using nanopore sequencing. Firstly, we determined the analytical sensitivity and specificity of our COVID-19-nsp10 assay. The COVID-19-nsp10 assay had a limit of detection of 74 copies/mL (95% confidence interval: 48-299 copies/mL) and did not show cross-reactivity with other respiratory viruses. Next, we determined the diagnostic performance of the COVID-19-nsp10 assay using 261 respiratory specimens, including 147 SARS-CoV-2-positive specimens belonging to the ancestral strain and Alpha, Beta, Gamma, Delta, Mu, Eta, Kappa, Theta and Omicron lineages. Using a LightMix E-gene RT-PCR assay as the reference method, the diagnostic sensitivity and specificity of the COVID-19-nsp10 assay were found to be 100%. The median Cp values for the LightMix E-gene RT-PCR and our COVID-19-nsp10 RT-PCR were 22.48 (range: 12.95-36.60) and 25.94 (range 16.37-36.87), respectively. The Cp values of the COVID-19-nsp10 RT-PCR assay correlated well with those of the LightMix E-gene RT-PCR assay (Spearman's ρ = 0.968; p < 0.0001). In conclusion, nsp10 is a suitable target for a SARS-CoV-2 RT-PCR assay.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teste para COVID-19 , Sensibilidade e EspecificidadeRESUMO
Omicron generally causes milder disease than previous strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially in fully vaccinated individuals. However, incompletely vaccinated children may develop Omicron-related complications such as those affecting the central nervous system. To characterize the spectrum of clinical manifestations of neuro-COVID and to identify potential biomarkers associated with clinical outcomes, we recruited 15 children hospitalized for Omicron-related neurological manifestations in three hospitals in Hong Kong (9 boys and 6 girls aged 1-13 years). All were unvaccinated or incompletely vaccinated. Fourteen (93.3%) were admitted for convulsion, including benign febrile seizure (n = 7), complex febrile seizure (n = 2), seizure with fever (n = 3), and recurrent breakthrough seizure (n = 2), and the remaining nonconvulsive patient developed encephalopathic state with impaired consciousness. None of the seven children with benign febrile seizure and six of eight children with other neurological manifestations had residual deficits at 9-month follow-up. SARS-CoV-2 RNA was undetectable in the cerebrospinal fluid (CSF) specimens of seven patients who underwent lumbar puncture. Spike-and-wave/sharp waves affecting the frontal lobes were detected in four of seven (57.1%) patients who underwent electroencephalogram. Children with Omicron-related neurological manifestations had significantly higher blood levels of IL-6 (p < 0.001) and CHI3L1 (p = 0.022) than healthy controls, and higher CSF levels of IL-6 (p = 0.002) than children with non-COVID-19-related febrile illnesses. Higher CSF-to-blood ratios of IL-8 and CHI3L1 were associated with longer length of stay, whereas higher ratios of IL-6 and IL-8 were associated with higher blood tau level. The role of CSF:blood ratio of IL-6, IL-8, and CHI3L1 as prognostic markers for neuro-COVID should be further evaluated.
Assuntos
COVID-19 , Convulsões Febris , Masculino , Feminino , Humanos , Criança , COVID-19/complicações , SARS-CoV-2 , Convulsões Febris/etiologia , Interleucina-6 , Interleucina-8 , RNA Viral , Convulsões/etiologiaRESUMO
Cytokine dynamics in patients with coronavirus disease 2019 (COVID-19) have been studied in blood but seldomly in respiratory specimens. We studied different cell markers and cytokines in fresh nasopharyngeal swab specimens for the diagnosis and for stratifying the severity of COVID-19. This was a retrospective case-control study comparing Myeloperoxidase (MPO), Adenosine deaminase (ADA), C-C motif chemokine ligand 22 (CCL22), Tumour necrosis factor alpha (TNFα) and Interleukin-6 (IL-6) mRNA expression in 490 (327 patients and 163 control) nasopharyngeal specimens from 317 (154 COVID-19 and 163 control) hospitalized patients. Of the 154 COVID-19 cases, 46 died. Both total and normalized MPO, ADA, CCL22, TNFα, and IL-6 mRNA expression levels were significantly higher in the nasopharyngeal specimens of infected patients when compared with controls, with ADA showing better performance (OR 5.703, 95% CI 3.424-9.500, p < 0.001). Receiver operating characteristics (ROC) curve showed that the cut-off value of normalized ADA mRNA level at 2.37 × 10-3 had a sensitivity of 81.8% and specificity of 83.4%. While patients with severe COVID-19 had more respiratory symptoms, and elevated lactate dehydrogenase, multivariate analysis showed that severe COVID-19 patients had lower CCL22 mRNA (OR 0.211, 95% CI 0.060-0.746, p = 0.016) in nasopharyngeal specimens, while lymphocyte count, C-reactive protein, and viral load in nasopharyngeal specimens did not correlate with disease severity. In summary, ADA appears to be a better biomarker to differentiate between infected and uninfected patients, while CCL22 has the potential in stratifying the severity of COVID-19.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Interleucina-6/genética , Fator de Necrose Tumoral alfa/genética , Estudos Retrospectivos , Adenosina Desaminase/genética , Adenosina Desaminase/análise , Adenosina Desaminase/metabolismo , Estudos de Casos e Controles , Peroxidase , Ligantes , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Citocinas , Quimiocinas , Nasofaringe , Quimiocina CCL22RESUMO
BACKGROUND: Air dispersal of respiratory viruses other than SARS-CoV-2 has not been systematically reported. The incidence and factors associated with air dispersal of respiratory viruses are largely unknown. METHODS: We performed air sampling by collecting 72,000 L of air over 6 hours for pediatric and adolescent patients infected with parainfluenza virus 3 (PIF3), respiratory syncytial virus (RSV), rhinovirus, and adenovirus. The patients were singly or 2-patient cohort isolated in airborne infection isolation rooms (AIIRs) from December 3, 2021, to January 26, 2022. The viral load in nasopharyngeal aspirates (NPA) and air samples were measured. Factors associated with air dispersal were investigated and analyzed. RESULTS: Of 20 singly isolated patients with median age of 30 months (range, 3 months-15 years), 7 (35%) had air dispersal of the viruses compatible with their NPA results. These included 4 (40%) of 10 PIF3-infected patients, 2 (66%) of 3 RSV-infected patients, and 1 (50%) of 2 adenovirus-infected patients. The mean viral load in their room air sample was 1.58×103 copies/mL. Compared with 13 patients (65%) without air dispersal, these 7 patients had a significantly higher mean viral load in their NPA specimens (6.15×107 copies/mL vs 1.61×105 copies/mL; P < .001). Another 14 patients were placed in cohorts as 7 pairs infected with the same virus (PIF3, 2 pairs; RSV, 3 pairs; rhinovirus, 1 pair; and adenovirus, 1 pair) in double-bed AIIRs, all of which had air dispersal. The mean room air viral load in 2-patient cohorts was significantly higher than in rooms of singly isolated patients (1.02×104 copies/mL vs 1.58×103 copies/mL; P = .020). CONCLUSION: Air dispersal of common respiratory viruses may have infection prevention and public health implications.
Assuntos
COVID-19 , Infecção Hospitalar , Infecções Respiratórias , Viroses , Vírus , Adolescente , Criança , Humanos , Lactente , SARS-CoV-2 , Viroses/epidemiologia , Vírus Sinciciais Respiratórios , RhinovirusRESUMO
BACKGROUND: Early antiviral therapy was effective in the treatment of coronavirus disease 2019 (COVID-19). We assessed the efficacy and safety of combined interferon beta-1b and remdesivir treatment in hospitalized COVID-19 patients. METHODS: We conducted a multicentre, prospective open-label, randomized-controlled trial involving high-risk adults hospitalized for COVID-19. Patients were randomly assigned to a 5-day interferon beta-1b 16 million units daily and remdesivir 200 mg loading on day 1 followed by 100 mg daily on day 2 to 5 (combination group), or to remdesivir only of similar regimen (control group) (1:1). The primary endpoint was the time to complete alleviation of symptoms (NEWS2 = 0). RESULTS: Two-hundred and twelve patients were enrolled. The median days of starting treatment from symptom onset was 3 days. The median age was 65 years, and 159 patients (75%) had chronic disease. The baseline demographics were similar. There was no mortality. For the primary endpoint, the combination group was significantly quicker to NEWS2 = 0 (4 vs 6.5 days; hazard ratio [HR], 6.59; 95% confidence interval [CI], 6.1-7.09; P < .0001) when compared to the control group. For the secondary endpoints, the combination group was quicker to negative nasopharyngeal swab (NPS) viral load (VL) (6 vs 8 days; HR, 8.16; 95% CI, 7.79-8.52; P < .0001) and to develop seropositive immunoglobulin G (IgG) (8 vs 10 days; HR, 10.78; 95% CI, 9.98-11.58; P < .0001). All adverse events resolved upon follow-up. Combination group (HR, 4.1 95% CI, 1.9-8.6, P < .0001) was the most significant independent factor associated with NEWS2 = 0 on day 4. CONCLUSIONS: Early treatment with interferon beta-1b and remdesivir was safe and better than remdesivir only in alleviating symptoms, and in shortening viral shedding and hospitalization with earlier seropositivity in high-risk COVID-19 patients. CLINICAL TRIALS REGISTRATION: NCT04647695.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Interferon beta-1b , Idoso , Humanos , Antivirais/efeitos adversos , Antivirais/uso terapêutico , COVID-19/terapia , Interferon beta-1b/administração & dosagem , Interferon beta-1b/uso terapêutico , Estudos Prospectivos , SARS-CoV-2 , Resultado do TratamentoRESUMO
Accurate and simple diagnostic tests for coronavirus disease 2019 (COVID-19) are essential components of the pandemic response. In this study, we evaluated a one-tube reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay coupled with clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-mediated endpoint detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in clinical samples. RT-LAMP-CRISPR is fast and affordable, does not require bulky thermocyclers, and minimizes carryover contamination risk. Results can be read either visually or with a fluorometer. RT-LAMP-CRISPR assays using primers targeting a highly expressed nsp8 gene and previously described nucleocapsid (N) gene primers were designed. The analytical characteristics and diagnostic performance of RT-LAMP-CRISPR assays were compared to those of a commercial real-time RT-PCR E gene assay. The limits of detection (LODs) of the nsp8 and N RT-LAMP-CRISPR assays were 750 and 2,000 copies/mL, which were higher than that of the commercial real-time RT-PCR assay (31.3 copies/mL). Despite the higher LOD, RT-LAMP-CRISPR assays showed diagnostic sensitivity and specificity of 98.6% and 100%, respectively, equivalent to those of the real-time RT-PCR assay (P = 0.5). The median fluorescence reading from the nsp8 assay (378.3 raw fluorescence unit [RFU] [range, 215.6 to 592.6]) was significantly higher than that of the N gene assay (342.0 RFU [range, 143.0 to 576.6]) (P < 0.0001). In conclusion, we demonstrate that RT-LAMP-CRISPR assays using primers rationally designed from highly expressed gene targets are highly sensitive, specific, and easy to perform. Such assays are a valuable asset in resource-limited settings. IMPORTANCE Accurate tests for the diagnosis of SARS-CoV-2, the virus causing coronavirus disease 2019 (COVID-19), are important for timely treatment and infection control decisions. Conventional tests such as real-time reverse transcription-PCR (RT-PCR) require specialized equipment and are expensive. On the other hand, rapid antigen tests suffer from a lack of sensitivity. In this study, we describe a novel assay format for the diagnosis of COVID-19 that is based on principles of loop-mediated isothermal amplification (LAMP) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas chemistry. A major advantage of this assay format is that it does not require expensive equipment to perform, and results can be read visually. This method proved to be fast, easy to perform, and inexpensive. The test compared well against an RT-PCR assay in terms of the ability to detect SARS-CoV-2 RNA in clinical samples. No false-positive test results were observed. The new assay format is ideal for SARS-CoV-2 diagnosis in resource-limited settings.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , RNA Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Primers do DNARESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 was a dominant circulating SARS-CoV-2 variant worldwide. Recent reports hint that BA.2 is similarly potent regarding antibody evasion but may be more transmissible than BA.1. The pathogenicity of BA.2 remains unclear and is of critical public health significance. Here we investigated the virological features and pathogenicity of BA.2 with in vitro and in vivo models. We show that BA.2 is less dependent on transmembrane protease serine 2 (TMPRSS2) for virus entry in comparison with BA.1 in vitro. In K18-hACE2 mice, BA.2 replicates more efficiently than BA.1 in the nasal turbinates and replicates marginally less efficiently in the lungs, leading to decreased body weight loss and improved survival. Our study indicates that BA.2 is similarly attenuated in lungs compared with BA.1 but is potentially more transmissible because of its better replication at the nasal turbinates.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Serina , VirulênciaRESUMO
Background & Aims: HEV variants such as swine genotypes within Paslahepevirus species balayani (HEV-A) and rat HEV (Rocahepevirus ratti; HEV-C1) cause chronic hepatitis E in immunocompromised individuals. There are few reliable and accessible small animal models that accurately reflect chronic HEV infection. We aimed to develop an immunocompromised rat model of chronic hepatitis E infection. Methods: In this animal model infection study, rats were immunosuppressed with a drug combination (prednisolone, tacrolimus, and mycophenolate mofetil) commonly taken by transplant recipients. Rats were challenged with human- and rat-derived HEV-C1 strains or a human-derived HEV-A strain. Viral load, liver function, liver histology, humoural, and cellular immune responses were monitored. Results: A high-dose (HD) immunosuppressive regimen consistently prolonged human- and rat-derived HEV-C1 infection in rats (up to 12 weeks post infection) compared with transient infections in low-dose (LD) immunosuppressant-treated and immunocompetent (IC) rats. Mean HEV-C1 viral loads in stool, serum, and liver tissue were higher in HD regimen-treated rats than in LD or IC rats (p <0.05). Alanine aminotransferase elevation was observed in chronically infected rats, which was consistent with histological hepatitis and HEV-C1 antigen expression in liver tissue. None (0/6) of the HD regimen-treated, 5/6 LD regimen-treated, and 6/6 IC rats developed antibodies to HEV-C1 in species-specific immunoblots. Reversal of immunosuppression was associated with clearance of viraemia and restoration of HEV-C1-specific humoural and cellular immune responses in HD regimen-treated rats, mimicking patterns in treated patients with chronic hepatitis E. Viral load suppression was observed with i.p. ribavirin treatment. HD regimen-treated rats remained unsusceptible to HEV-A infection. Conclusions: We developed a scalable immunosuppressed rat model of chronic hepatitis E that closely mimics this infection phenotype in transplant recipients. Lay summary: Convenient small animal models are required for the study of chronic hepatitis E in humans. We developed an animal model of chronic hepatitis E by suppressing immune responses of rats with drugs commonly taken by humans as organ transplant rejection prophylaxis. This model closely mimicked features of chronic hepatitis E in humans.
RESUMO
Formulating termination of isolation (de-isolation) policies requires up-to-date knowledge about viral shedding dynamics. However, current de-isolation policies are largely based on viral load data obtained before the emergence of Omicron variant. In this retrospective cohort study involving adult patients hospitalised for COVID-19 between January and February 2022, we sought to determine SARS-CoV-2 viral shedding kinetics and to investigate the risk factors associated with slow viral decline during the 2022 Omicron wave. A total of 104 patients were included. The viral load was highest (Ct value was lowest) on days 1 post-symptom-onset (PSO) and gradually declined. Older age, hypertension, hyperlipidaemia and chronic kidney disease were associated with slow viral decline in the univariate analysis on both day 7 and day 10 PSO, while incomplete or no vaccination was associated with slow viral decline on day 7 PSO only. However, older age was the only risk factor that remained statistically significant in the multivariate analysis. In conclusion, older age is an independent risk factor associated with slow viral decline in this study conducted during the Omicron-dominant 2022 COVID-19 wave. Transmission-based precaution guidelines should take age into consideration when determining the timing of de-isolation.
Assuntos
COVID-19 , Carga Viral , Eliminação de Partículas Virais , Adulto , Idoso , COVID-19/virologia , Humanos , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2RESUMO
The in vivo pathogenicity, transmissibility, and fitness of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant are not well understood. We compared these virological attributes of this new variant of concern (VOC) with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine and chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible through contact transmission. In noncontact transmission studies Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure, but this scenario changed once immune selection pressure with neutralizing antibodies-active against Delta but poorly active against Omicron-was introduced. Next-generation vaccines and antivirals effective against this new VOC are therefore urgently needed.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/transmissão , Modelos Animais de Doenças , Mesocricetus , SARS-CoV-2/patogenicidade , VirulênciaRESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Surtos de Doenças , Feminino , Hong Kong/epidemiologia , Humanos , Mamíferos , RNA Viral/genética , SARS-CoV-2/genéticaRESUMO
BACKGROUND: The role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the pathogenesis of testicular damage is uncertain. METHODS: We investigated the virological, pathological, and immunological changes in testes of hamsters challenged by wild-type SARS-CoV-2 and its variants with intranasal or direct testicular inoculation using influenza virus A(H1N1)pdm09 as control. RESULTS: Besides self-limiting respiratory tract infection, intranasal SARS-CoV-2 challenge caused acute decrease in sperm count, serum testosterone and inhibin B at 4-7 days after infection; and chronic reduction in testicular size and weight, and serum sex hormone at 42-120 days after infection. Acute histopathological damage with worsening degree of testicular inflammation, hemorrhage, necrosis, degeneration of seminiferous tubules, and disruption of orderly spermatogenesis were seen with increasing virus inoculum. Degeneration and death of Sertoli and Leydig cells were found. Although viral loads and SARS-CoV-2 nucleocapsid protein expression were markedly lower in testicular than in lung tissues, direct intratesticular injection of SARS-CoV-2 demonstrated nucleocapsid expressing interstitial cells and epididymal epithelial cells, While intranasal or intratesticular challenge by A(H1N1)pdm09 control showed no testicular infection or damage. From 7 to 120 days after infection, degeneration and apoptosis of seminiferous tubules, immune complex deposition, and depletion of spermatogenic cell and spermatozoa persisted. Intranasal challenge with Omicron and Delta variants could also induce similar testicular changes. This testicular damage can be prevented by vaccination. CONCLUSIONS: SARS-CoV-2 can cause acute testicular damage with subsequent chronic asymmetric testicular atrophy and associated hormonal changes despite a self-limiting pneumonia in hamsters. Awareness of possible hypogonadism and subfertility is important in managing convalescent coronavirus disease 2019 in men.
Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Animais , Cricetinae , Humanos , Masculino , SARS-CoV-2 , Sêmen , TestículoRESUMO
BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant, designated as a variant of concern by the World Health Organization, carries numerous spike mutations that are known to evade neutralizing antibodies elicited by coronavirus disease 2019 (COVID-19) vaccines. A deeper understanding of the susceptibility of omicron variant to vaccine-induced neutralizing antibodies is urgently needed for risk assessment. METHODS: Omicron variant strains HKU691 and HKU344-R346K were isolated from patients using TMPRSS2-overexpressing VeroE6 cells. Whole genome sequence was determined using nanopore sequencing. Neutralization susceptibility of ancestral lineage A virus and the omicron, delta and beta variants to sera from 25 BNT162b2 and 25 CoronaVac vaccine recipients was determined using a live virus microneutralization assay. RESULTS: The omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains deposited in the GISAID database. Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the omicron variant HKU691 and HKU344-R346K, respectively, whereas none of the CoronaVac recipients had detectable neutralizing antibody titer against either omicron isolate. For BNT162b2 recipients, the geometric mean neutralization antibody titers (GMTs) of the omicron variant isolates (5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus (229.4), and the GMTs of both omicron variant isolates were significantly lower than those of the beta and delta variants. There was no significant difference in the GMTs between HKU691 and HKU344-R346K. CONCLUSIONS: Omicron variant escapes neutralizing antibodies elicited by BNT162b2 or CoronaVac. The additional R346K mutation did not affect the neutralization susceptibility. Our data suggest that the omicron variant may be associated with lower COVID-19 vaccine effectiveness.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Testes de Neutralização , SARS-CoV-2/genéticaRESUMO
A false-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction result can lead to unnecessary public health measures. We report 2 individuals whose respiratory specimens were contaminated by an inactivated SARS-CoV-2 vaccine strain (CoronaVac), likely at vaccination premises. Incidentally, whole genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.
Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/genética , VacinaçãoRESUMO
BACKGROUND: Hepatitis E virus (HEV) variants belonging to Orthohepevirus species A (HEV-A) are the primary cause of human hepatitis E. However, we previously reported that Orthohepevirus species C genotype 1 (HEV-C1), a divergent HEV variant commonly found in rats, also causes hepatitis in humans. Here, we present a clinical-epidemiological investigation of human HEV-C1 infections detected in Hong Kong, with an emphasis on outcomes in immunocompromised individuals. METHODS: A surveillance system for detecting human HEV-C1 infections was established in Hong Kong. Epidemiological and clinical characteristics of HEV-C1 cases identified via this system between 1 August 2019 and 31 December 2020 were retrieved. Phylogenetic analysis of HEV-C1 strain sequences was performed. Infection outcomes of immunocompromised individuals with HEV-A and HEV-C1 infections were analyzed. RESULTS: HEV-C1 accounted for 8 of 53 (15.1%) reverse-transcription polymerase chain reaction (RT-PCR)-confirmed HEV infections in Hong Kong during the study period, raising the total number of HEV-C1 infections detected in the city to 16. Two distinct HEV-C1 strain groups caused human infections. Patients were elderly and/or immunocompromised; half tested negative for HEV immunoglobulin M. Cumulatively, HEV-C1 accounted for 9 of 21 (42.9%) cases of hepatitis E recorded in immunocompromised patients in Hong Kong. Immunocompromised HEV-C1 patients progressed to persistent hepatitis at similar rates (7/9 [77.8%]) as HEV-A patients (10/12 [75%]). HEV-C1 patients responded to oral ribavirin, although response to first course was sometimes poor or delayed. CONCLUSIONS: Dedicated RT-PCR-based surveillance detected human HEV-C1 cases that evade conventional hepatitis E diagnostic testing. Immunosuppressed HEV-C1-infected patients frequently progress to persistent HEV-C1 infection, for which ribavirin is a suitable treatment option.
Assuntos
Hepatite C , Vírus da Hepatite E , Hepatite E , Idoso , Animais , Vírus da Hepatite E/genética , Hong Kong/epidemiologia , Humanos , Filogenia , RNA Viral/genética , Ratos , RibavirinaRESUMO
BACKGROUND: Post-vaccination myopericarditis is reported after immunization with coronavirus disease 2019 (COVID-19) messenger RNA (mRNA) vaccines. The effect of inadvertent intravenous injection of this vaccine on the heart is unknown. METHODS: We compared the clinical manifestations, histopathological changes, tissue mRNA expression, and serum levels of cytokine/chemokine and troponin in Balb/c mice at different time points after intravenous (IV) or intramuscular (IM) vaccine injection with normal saline (NS) control. RESULTS: Although significant weight loss and higher serum cytokine/chemokine levels were found in IM group at 1-2 days post-injection (dpi), only IV group developed histopathological changes of myopericarditis as evidenced by cardiomyocyte degeneration, apoptosis, and necrosis with adjacent inflammatory cell infiltration and calcific deposits on visceral pericardium, although evidence of coronary artery or other cardiac pathologies was absent. Serum troponin level was significantly higher in IV group. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antigen expression by immunostaining was occasionally found in infiltrating immune cells of the heart or injection site, in cardiomyocytes and intracardiac vascular endothelial cells, but not skeletal myocytes. The histological changes of myopericarditis after the first IV-priming dose persisted for 2 weeks and were markedly aggravated by a second IM- or IV-booster dose. Cardiac tissue mRNA expression of interleukin (IL)-1ß, interferon (IFN)-ß, IL-6, and tumor necrosis factor (TNF)-α increased significantly from 1 dpi to 2 dpi in the IV group but not the IM group, compatible with presence of myopericarditis in the IV group. Ballooning degeneration of hepatocytes was consistently found in the IV group. All other organs appeared normal. CONCLUSIONS: This study provided in vivo evidence that inadvertent intravenous injection of COVID-19 mRNA vaccines may induce myopericarditis. Brief withdrawal of syringe plunger to exclude blood aspiration may be one possible way to reduce such risk.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Quimiocinas , Citocinas , Células Endoteliais , Humanos , Injeções Intravenosas , Camundongos , RNA Mensageiro , SARS-CoV-2 , Troponina , Vacinas Sintéticas , Vacinas de mRNARESUMO
BACKGROUND: Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages with mutations at the spike protein receptor binding domain (RBD) have reduced susceptibility to antibody neutralization, and have been classified as variants of concern (VOCs) or variants of interest (VOIs). Here we systematically compared the neutralization susceptibility and RBD binding of different VOCs/VOIs, including B.1.617.1 (kappa variant) and P.3 (theta variant), which were first detected in India and the Philippines, respectively. METHODS: The neutralization susceptibility of the VOCs/VOIs (B.1.351, B.1.617.1, and P.3) and a non-VOC/VOI without RBD mutations (B.1.36.27) to convalescent sera from coronavirus disease 2019 (COVID-19) patients or BNT162b2 vaccinees was determined using a live virus microneutralization (MN) assay. Serum immunoglobulin G (IgG) binding to wild-type and mutant RBDs were determined using an enzyme immunoassay. RESULTS: The geometric mean neutralization titers (GMT) of B.1.351, P.3, and B.1.617.1 were significantly lower than that of B.1.36.27 for COVID-19 patients infected with non-VOCs/VOIs (3.4- to 5.7-fold lower) or individuals who have received 2 doses of BNT162b2 vaccine (4.4- to 7.3-fold lower). The GMT of B.1.351 or P.3 were lower than that of B.1.617.1. For the 4 patients infected with B.1.351 or B.1.617.1, the MN titer was highest for their respective lineage. RBD with E484K or E484Q mutation, either alone or in combination with other mutations, showed greatest reduction in serum IgG binding. CONCLUSIONS: P.3 and B.1.617.1 escape serum neutralization induced by natural infection or vaccine. Infection with 1 variant does not confer cross-protection for heterologous lineages. Immunogenicity testing for second generation COVID-19 vaccines should include multiple variant and "nonvariant" strains.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Imunização Passiva , Imunoglobulina G , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação , Soroterapia para COVID-19RESUMO
OBJECTIVES: The emergence of SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of vaccines and are associated with a rebound in the number of COVID-19 cases globally. These variants contain mutations at the spike (S) protein receptor binding site (RBD), which affect antibody binding. Current commercially available antibody assays were developed before the VOCs emerged. It is unclear whether the levels of these commercially available antibody assays can predict the neutralizing antibody titers against the VOCs. In this study, we sought to determine the correlation between the binding antibody concentration and microneutralization antibody titer against the beta variant. METHODS: This study included 58 COVID-19 patients. The concentrations of IgG against the SARS-CoV-2 spike protein RBD and nucleocapsid (N) protein were measured using the Abbott SARS-CoV-2 IgG II Quant assay and the SARS-CoV-2 IgG assay, respectively. The neutralization antibody titer against the wild type lineage A SARS-CoV-2 and against the beta variant (B.1.351) was determined using a conventional live virus neutralization test. RESULTS: The geometric mean MN titer (GMT) against the beta variant was significantly lower than that against the wild type lineage A virus (5.6 vs. 47.3, p < 0.0001). The anti-RBD IgG had a better correlation with the neutralizing antibody titer than that of the anti-N IgG assay against the wild type lineage A virus (Spearman rho, 0.5901 vs. 0.3827). However, the correlation between the anti-RBD or the anti-N IgG and the MN titer against the beta variant was poor. CONCLUSIONS: Currently available commercial antibody assays may not predict the level of neutralizing antibodies against the variants. A new generation of antibody tests specific for variants are required.
RESUMO
Host cell lipids play a pivotal role in the pathogenesis of respiratory virus infection. However, a direct comparison of the lipidomic profile of influenza virus and rhinovirus infections is lacking. In this study, we first compared the lipid profile of influenza virus and rhinovirus infection in a bronchial epithelial cell line. Most lipid features were downregulated for both influenza virus and rhinovirus, especially for the sphingomyelin features. Pathway analysis showed that sphingolipid metabolism was the most perturbed pathway. Functional study showed that bacterial sphingomyelinase suppressed influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, but promoted rhinovirus replication. These findings suggest that sphingomyelin pathway can be a potential target for antiviral therapy, but should be carefully evaluated as it has opposite effects on different respiratory viruses. Furthermore, the differential effect of sphingomyelinase on rhinovirus and influenza virus may explain the interference between rhinovirus and influenza virus infection.