Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurobiol Aging ; 140: 22-32, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703636

RESUMO

Aging is associated with a priming of microglia such that they are hypersensitive to further immune challenges. As such high-fat diet during aging can have detrimental effects on cognition that is not seen in the young. However, conflicting findings also suggest that obesity may protect against cognitive decline during aging. Given this uncertainty we aimed here to examine the role of microglia in high-fat, high-sucrose diet (HFSD)-induced changes in cognitive performance in the aging brain. We hypothesised that 8 weeks of HFSD-feeding would alter microglia and the inflammatory milieu in aging and worsen aging-related cognitive deficits in a microglia-dependent manner. We found that both aging and HFSD reduced hippocampal neuron numbers and open field exploration; they also impaired recognition memory. However, the aging-related deficits occurred in the absence of a pro-inflammatory response and the deficits in memory performance persisted after depletion of microglia in the Cx3cr1-Dtr knock-in rat. Our data suggest that mechanisms additional to the acute microglial contribution play a role in aging- and HFSD-associated memory dysfunction.

2.
Brain Behav Immun ; 119: 867-877, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750700

RESUMO

The gastrointestinal tract is one of the main organs affected during systemic inflammation and disrupted gastrointestinal motility is a major clinical manifestation. Many studies have investigated the involvement of neuroimmune interactions in regulating colonic motility during localized colonic inflammation, i.e., colitis. However, little is known about how the enteric nervous system and intestinal macrophages contribute to dysregulated motility during systemic inflammation. Given that systemic inflammation commonly results from the innate immune response against bacterial infection, we mimicked bacterial infection by administering lipopolysaccharide (LPS) to rats and assessed colonic motility using ex vivo video imaging techniques. We utilized the Cx3cr1-Dtr rat model of transient depletion of macrophages to investigate the role of intestinal macrophages in regulating colonic motility during LPS infection. To investigate the role of inhibitory enteric neurotransmission on colonic motility following LPS, we applied the nitric oxide synthase inhibitor, Nω-nitro-L-arginine (NOLA). Our results confirmed an increase in colonic contraction frequency during LPS-induced systemic inflammation. However, neither the depletion of intestinal macrophages, nor the suppression of inhibitory enteric nervous system activity impacted colonic motility disruption during inflammation. This implies that the interplay between the enteric nervous system and intestinal macrophages is nuanced, and complex, and further investigation is needed to clarify their joint roles in colonic motility.

3.
Front Immunol ; 14: 1269890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868978

RESUMO

Intestinal macrophages are well-studied for their conventional roles in the immune response against pathogens and protecting the gut from chronic inflammation. However, these macrophages may also have additional functional roles in gastrointestinal motility under typical conditions. This is likely to occur via both direct and indirect influences on gastrointestinal motility through interaction with myenteric neurons that contribute to the gut-brain axis, but this mechanism is yet to be properly characterised. The CX3CR1 chemokine receptor is expressed in the majority of intestinal macrophages, so we used a conditional knockout Cx3cr1-Dtr (diphtheria toxin receptor) rat model to transiently ablate these cells. We then utilized ex vivo video imaging to evaluate colonic motility. Our previous studies in brain suggested that Cx3cr1-expressing cells repopulate by 7 days after depletion in this model, so we performed our experiments at both the 48 hr (macrophage depletion) and 7-day (macrophage repopulation) time points. We also investigated whether inhibitory neuronal input driven by nitric oxide from the enteric nervous system is required for the regulation of colonic motility by intestinal macrophages. Our results demonstrated that CD163-positive resident intestinal macrophages are important in regulating colonic motility in the absence of this major inhibitory neuronal input. In addition, we show that intestinal macrophages are indispensable in maintaining a healthy intestinal structure. Our study provides a novel understanding of the interplay between the enteric nervous system and intestinal macrophages in colonic motility. We highlight intestinal macrophages as a potential therapeutic target for gastrointestinal motility disorders when inhibitory neuronal input is suppressed.


Assuntos
Interneurônios , Macrófagos , Animais , Ratos , Encéfalo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina
4.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G477-G487, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126271

RESUMO

Gastrointestinal motility is crucial to gut health and has been associated with different disorders such as inflammatory bowel diseases and postoperative ileus. Despite rat and mouse being the two animal models most widely used in gastrointestinal research, minimal studies in rats have investigated gastrointestinal motility. Therefore, our study provides a comparison of colonic motility in the mouse and rat to clarify species differences and assess the relative effectiveness of each animal model for colonic motility research. We describe the protocol modifications and optimization undertaken to enable video imaging of colonic motility in the rat. Apart from the broad difference in terms of gastrointestinal diameter and length, we identified differences in the fundamental histology of the proximal colon such that the rat had larger villus height-to-width and villus height-to-crypt depth ratios compared with mouse. Since gut motility is tightly regulated by the enteric nervous system (ENS), we investigated how colonic contractile activity within each rodent species responds to modulation of the ENS inhibitory neuronal network. Here we used Nω-nitro-l-arginine (l-NNA), an inhibitor of nitric oxide synthase (NOS) to assess proximal colon responses to the stimulatory effect of blocking the major inhibitory neurotransmitter, nitric oxide (NO). In rats, the frequency of proximal colonic contractions increased in the presence of l-NNA (vs. control levels) to a greater extent than in mice. This is despite a similar number of NOS-expressing neurons in the myenteric plexus across species. Given this increase in colonic contraction frequency, the rat represents another relevant animal model for investigating how gastrointestinal motility is regulated by the inhibitory neuronal network of the ENS.NEW & NOTEWORTHY Mice and rats are widely used in gastrointestinal research but have fundamental differences that make them important as different models for different questions. We found that mice have a higher villi length-to-width and villi length-to-crypt depth ratio than rat in proximal colon. Using the ex vivo video imaging technique, we observed that rat colon has more prominent response to blockade of major inhibitory neurotransmitter (nitric oxide) in myenteric plexus than mouse colon.


Assuntos
Sistema Nervoso Entérico , Óxido Nítrico , Ratos , Camundongos , Animais , Óxido Nítrico/farmacologia , Ratos Sprague-Dawley , Sistema Nervoso Entérico/fisiologia , Plexo Mientérico , Motilidade Gastrointestinal/fisiologia , Colo , Nitroarginina/farmacologia , Óxido Nítrico Sintase , Modelos Animais de Doenças
5.
Cell Mol Gastroenterol Hepatol ; 12(5): 1701-1718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506953

RESUMO

Intestinal macrophages play a key role in the gut immune system and the regulation of gastrointestinal physiology, including gut motility and secretion. Their ability to keep the gut from chronic inflammation despite constantly facing foreign antigens has been an important focus in gastrointestinal research. However, the heterogeneity of intestinal macrophages has impeded our understanding of their specific roles. It is now becoming clear that subsets of intestinal macrophages play diverse roles in various gastrointestinal diseases. This occurs through a complex interplay between cytokine production and enteric nervous system activation that differs for each pathologic condition. Key diseases and disorders in which intestinal macrophages play a role include postoperative ileus, inflammatory bowel disease, necrotizing enterocolitis, as well as gastrointestinal disorders associated with human immunodeficiency virus and Parkinson's disease. Here, we review the identification of intestinal macrophage subsets based on their origins and functions, how specific subsets regulate gut physiology, and the potential for these heterogeneous subpopulations to contribute to disease states. Furthermore, we outline the potential for these subpopulations to provide unique targets for the development of novel therapies for these disorders.


Assuntos
Trato Gastrointestinal/fisiologia , Homeostase , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Comunicação Celular , Plasticidade Celular , Suscetibilidade a Doenças , Sistema Nervoso Entérico , Motilidade Gastrointestinal , Regulação da Expressão Gênica , Humanos , Especificidade de Órgãos , Transdução de Sinais
6.
Molecules ; 25(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172018

RESUMO

Adult neurogenesis is modulated by many Gi-coupled receptors but the precise mechanism remains elusive. A key step for maintaining the population of neural stem cells in the adult is asymmetric cell division (ACD), a process which entails the formation of two evolutionarily conserved protein complexes that establish the cell polarity and spindle orientation. Since ACD is extremely difficult to monitor in stratified tissues such as the vertebrate brain, we employed human neural progenitor cell lines to examine the regulation of the polarity and spindle orientation complexes during neuronal differentiation. Several components of the spindle orientation complex, but not those of the polarity complex, were upregulated upon differentiation of ENStem-A and ReNcell VM neural progenitor cells. Increased expression of nuclear mitotic apparatus (NuMA), Gαi subunit, and activators of G protein signaling (AGS3 and LGN) coincided with the appearance of a neuronal marker (ß-III tubulin) and the concomitant loss of neural progenitor cell markers (nestin and Sox-2). Co-immunoprecipitation assays demonstrated that both Gαi3 and NuMA were associated with AGS3 in differentiated ENStem-A cells. Interestingly, AGS3 appeared to preferentially interact with Gαi3 in ENStem-A cells, and this specificity for Gαi3 was recapitulated in co-immunoprecipitation experiments using HEK293 cells transiently overexpressing GST-tagged AGS3 and different Gαi subunits. Moreover, the binding of Gαi3 to AGS3 was suppressed by GTPγS and pertussis toxin. Disruption of AGS3/Gαi3 interaction by pertussis toxin indicates that AGS3 may recognize the same site on the Gα subunit as G protein-coupled receptors. Regulatory mechanisms controlling the formation of spindle orientation complex may provide novel means to manipulate ACD which in turn may have an impact on neurogenesis.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Diferenciação Celular , Linhagem Celular , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Células-Tronco Neurais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA