Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Neurol ; 94(4): 713-726, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37486023

RESUMO

OBJECTIVE: The objective of this study was to aggregate data for the first genomewide association study meta-analysis of cluster headache, to identify genetic risk variants, and gain biological insights. METHODS: A total of 4,777 cases (3,348 men and 1,429 women) with clinically diagnosed cluster headache were recruited from 10 European and 1 East Asian cohorts. We first performed an inverse-variance genomewide association meta-analysis of 4,043 cases and 21,729 controls of European ancestry. In a secondary trans-ancestry meta-analysis, we included 734 cases and 9,846 controls of East Asian ancestry. Candidate causal genes were prioritized by 5 complementary methods: expression quantitative trait loci, transcriptome-wide association, fine-mapping of causal gene sets, genetically driven DNA methylation, and effects on protein structure. Gene set and tissue enrichment analyses, genetic correlation, genetic risk score analysis, and Mendelian randomization were part of the downstream analyses. RESULTS: The estimated single nucleotide polymorphism (SNP)-based heritability of cluster headache was 14.5%. We identified 9 independent signals in 7 genomewide significant loci in the primary meta-analysis, and one additional locus in the trans-ethnic meta-analysis. Five of the loci were previously known. The 20 genes prioritized as potentially causal for cluster headache showed enrichment to artery and brain tissue. Cluster headache was genetically correlated with cigarette smoking, risk-taking behavior, attention deficit hyperactivity disorder (ADHD), depression, and musculoskeletal pain. Mendelian randomization analysis indicated a causal effect of cigarette smoking intensity on cluster headache. Three of the identified loci were shared with migraine. INTERPRETATION: This first genomewide association study meta-analysis gives clues to the biological basis of cluster headache and indicates that smoking is a causal risk factor. ANN NEUROL 2023;94:713-726.


Assuntos
Cefaleia Histamínica , Transtornos de Enxaqueca , Masculino , Humanos , Feminino , Cefaleia Histamínica/epidemiologia , Cefaleia Histamínica/genética , Fatores de Risco , Estudo de Associação Genômica Ampla , Fumar/efeitos adversos , Fumar/genética , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética
2.
Brain ; 145(9): 3022-3034, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35759269

RESUMO

TAF8 is part of the transcription factor II D complex, composed of the TATA-binding protein and 13 TATA-binding protein-associated factors (TAFs). Transcription factor II D is the first general transcription factor recruited at promoters to assemble the RNA polymerase II preinitiation complex. So far disorders related to variants in 5 of the 13 subunits of human transcription factor II D have been described. Recently, a child with a homozygous c.781-1G>A mutation in TAF8 has been reported. Here we describe seven further patients with mutations in TAF8 and thereby confirm the TAF8 related disorder. In two sibling patients, we identified two novel compound heterozygous TAF8 splice site mutations, c.45+4A > G and c.489G>A, which cause aberrant splicing as well as reduced expression and mislocalization of TAF8. In five further patients, the previously described c.781-1G > A mutation was present on both alleles. The clinical phenotype associated with the different TAF8 mutations is characterized by severe psychomotor retardation with almost absent development, feeding problems, microcephaly, growth retardation, spasticity and epilepsy. Cerebral imaging showed hypomyelination, a thin corpus callosum and brain atrophy. Moreover, repeated imaging in the sibling pair demonstrated progressive cerebral and cerebellar atrophy. Consistently, reduced N-acetylaspartate, a marker of neuronal viability, was observed on magnetic resonance spectroscopy. Further review of the literature shows that mutations causing a reduced expression of transcription factor II D subunits have an overlapping phenotype of microcephaly, developmental delay and intellectual disability. Although transcription factor II D plays an important role in RNA polymerase II transcription in all cells and tissues, the symptoms associated with such defects are almost exclusively neurological. This might indicate a specific vulnerability of neuronal tissue to widespread deregulation of gene expression as also seen in Rett syndrome or Cornelia de Lange syndrome.


Assuntos
Microcefalia , Doenças Neurodegenerativas , Fator de Transcrição TFIID , Atrofia/complicações , Criança , Humanos , Microcefalia/genética , Mutação , Doenças Neurodegenerativas/complicações , Fenótipo , RNA Polimerase II , Proteína de Ligação a TATA-Box/genética , Fator de Transcrição TFIID/genética
3.
Ann Neurol ; 90(2): 193-202, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184781

RESUMO

OBJECTIVE: This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10-17 , odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37-1.66) and rs4519530 (p = 6.98 × 10-17 , OR = 1.47, 95% CI = 1.34-1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10-8 , OR = 1.36, 95% CI = 1.22-1.52), and rs11153082 (p = 1.85 × 10-8 , OR = 1.30, 95% CI = 1.19-1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193-202.


Assuntos
Cefaleia Histamínica/epidemiologia , Cefaleia Histamínica/genética , Loci Gênicos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Estudos de Casos e Controles , Cefaleia Histamínica/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Suécia/epidemiologia , Reino Unido/epidemiologia
4.
Congenit Anom (Kyoto) ; 61(5): 177-182, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34184791

RESUMO

The Ehlers-Danlos syndrome (EDS) is a group of heritable connective tissue disorders. Common features of EDS include skin hyperextensibility, articular hypermobility, and tissue fragility. It is classified into 13 subtypes, caused by variations of more than 19 different genes. Among these two subtypes, EDS musculocontractural type 1 (EDSMC1/mcEDS-CHST14; MIM# 601776) is caused by biallelic mutations in the CHST14 gene (MIM# 608429) on chromosome 15q14 and EDS musculocontractural type 2 (EDSMC2/mcEDS-DSE;MIM#615539) is caused by a mutation in DSE (MIM# 605942) on chromosome 6q22. In this study, clinical and molecular diagnoses have been performed for a consanguineous Pakistani (Pakhtun) family with five affected siblings, presenting mcEDS-DSE phenotype. Whole-exome sequencing analysis identified a novel homozygous DSE variant (NM_001080976.1; c.2813T>A, p.Val938Asp) in the proband. Sanger sequencing in all available affected members and their obligate carriers confirmed autosomal recessive segregation of the diseased allele. To the best of our knowledge, this variant identified is novel and expands the DSE pathogenicity leading to EDS, musculocontractural type 2. The result obtained has the potential to help in early diagnosis, genetic counseling, and possible therapeutic inventions.


Assuntos
Antígenos de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Síndrome de Ehlers-Danlos , Proteínas de Neoplasias/genética , Sulfotransferases , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Humanos , Mutação , Paquistão , Fenótipo , Sulfotransferases/genética
6.
Brain ; 144(2): 584-600, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559681

RESUMO

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Assuntos
Proteínas da Matriz Extracelular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Adulto , Idoso , Animais , Comportamento Animal/fisiologia , Criança , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA