Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(5): 4056-4067, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270089

RESUMO

Peptide-based vaccines have been widely investigated in cancer immunotherapy. Despite their high specificity, safety, and low production cost, these vaccines have shown limited success in clinical studies, owing to their poor immunogenicity. Extensive efforts have been devoted to increasing the immunogenicity of peptide vaccines by mixing peptides with adjuvants and/or promoting their delivery to tumor-draining lymph nodes (TdLNs) for better antigen presentation by and maturation of dendritic cells. Among these efforts, the exploration of various nanoparticles has been at the forefront of the rational design and construction of peptide-based vaccines. Here, we present a nanovaccine platform that is built on a self-assembled RNA origami (RNA-OG) nanostructure. As previously reported, this RNA-OG nanostructure is a potent toll-like receptor (TLR)3 agonist. In addition, due to its robust synthesis and versatility in modification, RNA-OG could be readily linked to peptides of interest. Thus, these RNA-OG nanostructures function as adjuvanted nanocarriers to construct RNA-OG-peptide nanovaccines that are uniform in size, consistent in peptide loading, and highly stable. Here, we demonstrate that the assembled RNA-OG-peptide nanovaccines induced dendritic cell maturation, reduced tumor-mediated immunosuppression, and mobilized tumor-specific CD8+ T cell responses at the tumor site. Together, these actions led to the elicitation of an effective antitumor immunity that increased the survival of tumor-bearing mice. The combination of RNA-OG-based nanovaccines with the α-PD-1 immune checkpoint blockade further enhanced the immunity. Hence, our RNA-OG nanostructures represent a robust, simple, and highly effective platform to empower peptide-based vaccines for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Animais , Camundongos , Nanovacinas , RNA , Imunoterapia , Adjuvantes Imunológicos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Peptídeos/uso terapêutico , Camundongos Endogâmicos C57BL
2.
J Nutr ; 152(10): 2218-2226, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36084236

RESUMO

BACKGROUND: Inflammation is at the core of many chronic conditions and exacerbates infectious conditions, including the severity of coronavirus disease 2019 (COVID-19) infections. OBJECTIVES: This study aimed to examine the effects of a novel food supplement, palmitoylethanolamide (PEA), specifically Levagen+, as compared with a placebo on proinflammatory biomarkers in adults recently diagnosed with COVID-19 who were unvaccinated and nonhospitalized. METHODS: This study was a double-blind randomized placebo-controlled trial conducted October 2020-March 2021 (clinicaltrials.gov: NCT04912921). Participants aged 19-53 y were unvaccinated and recently infected with COVID-19 as indicated by a positive test result per RT-PCR or antigen test, and they reported to the test site following diagnosis as allowed by the CDC's return-to-work policy. Participants were stratified by age, sex, and BMI and randomly assigned by coin toss to receive 600 mg Levagen+ twice daily (LEV) or placebo tablets twice daily (CON) for 4 wk. At baseline and week 4, participants completed health histories, 24-h dietary recalls, anthropometrics, and nonfasting blood sampling. The primary outcomes were the 4-wk change between groups for IL-6, C-reactive protein, ferritin, intercellular adhesion molecule 1, soluble P-selectin (sP-selectin), and neutrophil/lymphocyte ratio. Multiple linear regression models were utilized to assess treatment effects on outcomes, adjusting for covariates. RESULTS: A total of 60 participants completed the study (LEV: n = 30; CON: n = 30). After 4 wk of supplementation, sP-selectin (ß = -11.5; 95% CI: -19.8, -3.15; P = 0.0078), IL-1ß (ß = -22.9; 95% CI: -42.4, -3.40; P = 0.0222), and IL-2 (ß = -1.73; 95% CI: -3.45, -0.065; P = 0.0492) concentrations were significantly reduced in the LEV group compared with the CON group. CONCLUSIONS: Inflammatory mechanisms are crucial to optimal resolution of infectious conditions, yet unchecked secretion of inflammatory mediators can promote the dysregulated immune response implicated in COVID-19 complications. Overall, PEA supplementation produced anti-inflammatory effects in individuals recently diagnosed with COVID-19 who were nonhospitalized.


Assuntos
COVID-19 , Adulto , Amidas , Anti-Inflamatórios , Biomarcadores , Proteína C-Reativa , Método Duplo-Cego , Etanolaminas , Ferritinas , Humanos , Mediadores da Inflamação , Molécula 1 de Adesão Intercelular , Interleucina-2 , Interleucina-6 , Selectina-P , Ácidos Palmíticos , SARS-CoV-2 , Resultado do Tratamento
3.
ACS Nano ; 14(4): 4727-4740, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32275389

RESUMO

Rapid developments in nucleic acid nanotechnology have enabled the rational design and construction of self-assembling DNA and RNA nanostructures that are highly programmable. We recently developed a replicable single-stranded RNA origami (RNA-OG) technology that allows a long RNA molecule to be programmed to self-assemble into nanostructures of various shapes. Here, we show that such RNA-OG is highly stable in serum/plasma, and we thus exploited its immunostimulatory potential. We demonstrated that the RNA-OG stimulates a potent innate response primarily through a Toll-like receptor 3 (TLR3) pathway. In a murine peritoneal metastatic colon cancer model, intraperitoneally injected RNA-OG induced significant tumor retardation or regression by activating NK- and CD8-dependent antitumor immunity and antagonizing the peritoneal immunosuppressive environment. Unlike polyinosinic/polycytidylic acid (PolyIC), a well-known double-stranded RNA analogue, the RNA-OG treatment did not cause a high level of type-I interferons in the blood nor apparent toxicity upon its systemic administration in the animals. This work establishes the function of RNA-OG as a potent line of TLR3 agonists that are safe and effective for cancer immunotherapy.


Assuntos
Imunoterapia , Nanoestruturas , Animais , Fatores Imunológicos , Camundongos , Nanotecnologia , Poli I-C
4.
Mol Biol Cell ; 26(4): 594-604, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25518935

RESUMO

Apolipoprotein (apo) B is an obligatory component of very low density lipoprotein (VLDL), and its cotranslational and posttranslational modifications are important in VLDL synthesis, secretion, and hepatic lipid homeostasis. ApoB100 contains 25 cysteine residues and eight disulfide bonds. Although these disulfide bonds were suggested to be important in maintaining apoB100 function, neither the specific oxidoreductase involved nor the direct role of these disulfide bonds in apoB100-lipidation is known. Here we used RNA knockdown to evaluate both MTP-dependent and -independent roles of PDI1 in apoB100 synthesis and lipidation in McA-RH7777 cells. Pdi1 knockdown did not elicit any discernible detrimental effect under normal, unstressed conditions. However, it decreased apoB100 synthesis with attenuated MTP activity, delayed apoB100 oxidative folding, and reduced apoB100 lipidation, leading to defective VLDL secretion. The oxidative folding-impaired apoB100 was secreted mainly associated with LDL instead of VLDL particles from PDI1-deficient cells, a phenotype that was fully rescued by overexpression of wild-type but not a catalytically inactive PDI1 that fully restored MTP activity. Further, we demonstrate that PDI1 directly interacts with apoB100 via its redox-active CXXC motifs and assists in the oxidative folding of apoB100. Taken together, these findings reveal an unsuspected, yet key role for PDI1 in oxidative folding of apoB100 and VLDL assembly.


Assuntos
Apolipoproteína B-100/química , Isomerases de Dissulfetos de Proteínas/fisiologia , Animais , Apolipoproteína B-100/biossíntese , Linhagem Celular , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Homeostase , Metabolismo dos Lipídeos , Camundongos , Estresse Oxidativo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA