Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 405(Pt A): 134843, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36347203

RESUMO

Torreya grandis nut is a chief functional food in China consumed for centuries. Besides its rich protein composition, increasing studies are now focusing on T. grandis functional proteins that have not yet identified. In this study, liquid chromatography coupled with mass spectrometry detection of smaller and major proteins, revealed that the major peptide was 36935.00 Da. Proteome sequencing annotated 142 proteins in total. Bioactive proteins such as defensin 4 was annotated and its anti-microbial function was verified. Finally, functional oligopeptides were predicted by searching sequences of digested peptides in databases. Ten group of oligopeptides were suggested to exhibit antioxidant, Angiotensin-converting enzyme inhibition, anti-inflammatory. The predicted antioxidant activity was experimentally validated. It is interesting that a peptide GYCVSDNN digested from defensin 4 showed antioxidant activity. This study reports novel functional peptides from T. grandis nuts that have not been isolated and/or included as functional ingredients in nutraceuticals and in food industry.


Assuntos
Nozes , Taxaceae , Nozes/química , Antioxidantes/análise , Proteômica , Taxaceae/química , Oligopeptídeos/análise , Peptídeos/análise , Defensinas/análise
2.
Front Chem ; 10: 912411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147253

RESUMO

Deep eutectic solvents (DESs) are a mixture of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) molecules that can consist, respectively, of natural plant metabolites such as sugars, carboxylic acids, amino acids, and ionic molecules, which are for the vast majority ammonium salts. Media such as DESs are modular tools of sustainability that can be pointed toward the extraction of bioactive molecules due to their excellent physicochemical properties, their relatively low price, and accessibility. The present review focuses on the application of DESs for protein extraction and purification. The in-depth effects and principles that apply to DES-mediated extraction using various renewable biomasses will be discussed as well. One of the most important observations being made is that DESs have a clear ability to maintain the biological and/or functional activity of the extracted proteins, as well as increase their stability compared to traditional solvents. They demonstrate true potential for a reproducible but more importantly, scalable protein extraction and purification compared to traditional methods while enabling waste valorization in some particular cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA