Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 98(23): 9653-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25236800

RESUMO

Four potential dehydrogenases identified through literature and bioinformatic searches were tested for L-arabonate production from L-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a D-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a L-arabinose/D-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP(+) but uses also NAD(+) as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards L-arabinose, D-galactose and D-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of L-arabinose, and the stable oxidation product detected is L-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear L-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for L-arabinose uptake, resulted in production of 18 g of L-arabonate per litre, at a rate of 248 mg of L-arabonate per litre per hour, with 86 % of the provided L-arabinose converted to L-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for L-arabonate production in yeast.


Assuntos
Arabinose/metabolismo , Galactose Desidrogenases/metabolismo , Rhizobium leguminosarum/enzimologia , Saccharomyces cerevisiae/metabolismo , Açúcares Ácidos/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Estabilidade Enzimática , Galactose Desidrogenases/química , Galactose Desidrogenases/genética , Galactose Desidrogenases/isolamento & purificação , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , NAD/metabolismo , NADP/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rhizobium leguminosarum/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
2.
J Biol Chem ; 289(12): 8588-98, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24469451

RESUMO

Immunoglobulin-like (Ig) domains are a widely expanded superfamily that act as interaction motifs or as structural spacers in multidomain proteins. Vertebrate filamins (FLNs), which are multifunctional actin-binding proteins, consist of 24 Ig domains. We have recently discovered that in the C-terminal rod 2 region of FLN, Ig domains interact with each other forming functional domain pairs, where the interaction with signaling and transmembrane proteins is mechanically regulated by weak actomyosin contraction forces. Here, we investigated if there are similar inter-domain interactions around domain 4 in the N-terminal rod 1 region of FLN. Protein crystal structures revealed a new type of domain organization between domains 3, 4, and 5. In this module, domains 4 and 5 interact rather tightly, whereas domain 3 has a partially flexible interface with domain 4. NMR peptide titration experiments showed that within the three-domain module, domain 4 is capable for interaction with a peptide derived from platelet glycoprotein Ib. Crystal structures of FLN domains 4 and 5 in complex with the peptide revealed a typical ß sheet augmentation interaction observed for many FLN ligands. Domain 5 was found to stabilize domain 4, and this could provide a mechanism for the regulation of domain 4 interactions.


Assuntos
Filaminas/química , Sequência de Aminoácidos , Cristalografia por Raios X , Filaminas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
3.
J Chem Inf Model ; 53(10): 2626-33, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23988151

RESUMO

Filamins (FLN) are large dimeric proteins that cross-link actin and work as important scaffolds in human cells. FLNs consist of an N-terminal actin-binding domain followed by 24 immunoglobulin-like domains (FLN1-24). FLN domains are divided into four subgroups based on their amino acid sequences. One of these subgroups, including domains 4, 9, 12, 17, 19, 21, and 23, shares a similar ligand-binding site between the ß strands C and D. Several proteins, such as integrins ß2 and ß7, glycoprotein Ibα (GPIbα), and migfilin, have been shown to bind to this site. Here, we computationally estimated the binding free energies of filamin A (FLNa) subunits with bound peptides using the molecular mechanics-generalized Born surface area (MMGBSA) method. The obtained computational results correlated well with the experimental data, and they ranked efficiently both the binding of one ligand to all used FLNa-domains and the binding of all used ligands to FLNa21. Furthermore, the steered molecular dynamics (SMD) simulations pinpointed the binding hot spots for these complexes. These results demonstrate that molecular dynamics combined with free energy calculations are applicable to estimating the energetics of protein-protein interactions and can be used to direct the development of novel FLN function modulators.


Assuntos
Algoritmos , Antígenos CD18/química , Moléculas de Adesão Celular/química , Proteínas do Citoesqueleto/química , Filaminas/química , Cadeias beta de Integrinas/química , Peptídeos/química , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Sítios de Ligação , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Termodinâmica
4.
Biochim Biophys Acta ; 1834(10): 1988-97, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23856547

RESUMO

T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1ß1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics.


Assuntos
Antineoplásicos/química , Integrina alfa1beta1/química , Mitoxantrona/química , Peptídeos/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Bibliotecas de Moléculas Pequenas/química , Espermidina/química , Bases de Dados de Proteínas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Eletricidade Estática , Termodinâmica
5.
PLoS One ; 7(10): e47604, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077649

RESUMO

N-methyl-D-aspartate (NMDA) receptors belong to a family of ionotropic glutamate receptors that contribute to the signal transmission in the central nervous system. NMDA receptors are heterotetramers that usually consist of two GluN1 and GluN2 monomers. The extracellular ligand-binding domain (LBD) of a monomer is comprised of discontinuous segments that form the functional domains D1 and D2. While the binding of a full agonist glycine to LBD of GluN1 is linked to cleft closure and subsequent ion-channel opening, partial agonists are known to activate the receptor only sub-maximally. Although the crystal structures of the LBD of related GluA2 receptor explain the mechanism for the partial agonism, structures of GluN1-LBD cannot distinguish the difference between full and partial agonists. It is, however, probable that the partial agonists of GluN1 alter the structure of the LBD in order to result in a different pharmacological response than seen with full agonists. In this study, we used molecular dynamics simulations to reveal an intermediate closure-stage for GluN1, which is unseen in crystal structures. According to our calculations, this intermediate closure is not a transient stage but an energetically stable conformation. Our results demonstrate that the partial agonist cannot exert firm GluN1-LBD closure, especially if there is even a small force that disrupts the LBD closure. Accordingly, this result suggests the importance of forces from the ion channel for the relationship between pharmacological response and the structure of the LBD of members of this receptor family.


Assuntos
Ciclosserina , Glicina/química , Estrutura Terciária de Proteína , Receptores de N-Metil-D-Aspartato , Cristalografia , Ciclosserina/análogos & derivados , Ciclosserina/química , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química
6.
J Chem Inf Model ; 51(5): 1037-47, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21500800

RESUMO

Ionotropic glutamate receptors (iGluRs) are synaptic proteins that facilitate signal transmission in the central nervous system. Extracellular iGluR cleft closure is linked to receptor activation; however, the mechanism underlying partial agonism is not entirely understood. Full agonists close the bilobed ligand-binding domain (LBD), while antagonists prevent closure; the transmembrane ion channel either opens or stays closed, respectively. Although some bulky partial agonists produce intermediate iGluR-LBD closure, the available crystal structures also imply that the cleft can be shut with certain partial agonists. Recently, we have shown that the iGluR-LBD closure stage can be recreated by inserting a ligand into the closed cleft and simulating the ligand-receptor complex with molecular dynamics. Our simulations indicate that partial agonist binding does not necessarily prevent full receptor cleft closure; instead, it destabilizes cleft closure. Interdomain hydrogen bonds were studied thoroughly, and one hydrogen bond, in particular, was consistently disrupted by bound partial agonists. Accordingly, the simulation protocol presented here can be used to categorize compounds in silico as partial or full agonists for iGluRs.


Assuntos
Simulação de Dinâmica Molecular , Receptores Ionotrópicos de Glutamato/agonistas , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Ligação Proteica , Conformação Proteica , Receptores Ionotrópicos de Glutamato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA