Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Adv ; 10(7): eadj7481, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354249

RESUMO

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.


Assuntos
Aorta , Atividade Motora , Animais , Camundongos , Aorta/metabolismo , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
3.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205360

RESUMO

Exercise modulates vascular plasticity in multiple organ systems; however, the metabolomic transducers underlying exercise and vascular protection in the disturbed flow-prone vasculature remain under-investigated. We simulated exercise-augmented pulsatile shear stress (PSS) to mitigate flow recirculation in the lesser curvature of the aortic arch. When human aortic endothelial cells (HAECs) were subjected to PSS ( τ ave = 50 dyne·cm -2 , ∂τ/∂t = 71 dyne·cm -2 ·s -1 , 1 Hz), untargeted metabolomic analysis revealed that Stearoyl-CoA Desaturase (SCD1) in the endoplasmic reticulum (ER) catalyzed the fatty acid metabolite, oleic acid (OA), to mitigate inflammatory mediators. Following 24 hours of exercise, wild-type C57BL/6J mice developed elevated SCD1-catalyzed lipid metabolites in the plasma, including OA and palmitoleic acid (PA). Exercise over a 2-week period increased endothelial SCD1 in the ER. Exercise further modulated the time-averaged wall shear stress (TAWSS or τ ave) and oscillatory shear index (OSI ave ), upregulated Scd1 and attenuated VCAM1 expression in the disturbed flow-prone aortic arch in Ldlr -/- mice on high-fat diet but not in Ldlr -/- Scd1 EC-/- mice. Scd1 overexpression via recombinant adenovirus also mitigated ER stress. Single cell transcriptomic analysis of the mouse aorta revealed interconnection of Scd1 with mechanosensitive genes, namely Irs2 , Acox1 and Adipor2 that modulate lipid metabolism pathways. Taken together, exercise modulates PSS ( τ ave and OSI ave ) to activate SCD1 as a metabolomic transducer to ameliorate inflammation in the disturbed flow-prone vasculature.

4.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813507

RESUMO

Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirimidinas/biossíntese , Pirofosfatases/metabolismo , Regeneração , Transdução de Sinais , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Camundongos , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética
5.
Mater Sci Eng C Mater Biol Appl ; 125: 112083, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33965099

RESUMO

Calcium carbonate is used as bone-filling material due to its good biocompatibility, bioactivity, and bioabsorbability, but the prevalence of infectious complications associated with calcium carbonate has created a persisting challenge in the treatment of bone defect. Therefore, this greatly necessitate the need to endow calcium carbonate with antibacterial properties. In this study, calcium carbonate powders loaded with silver nanoparticles (Ag-CaCO3) were prepared in attempt to serve as a novel antibacterial inorganic filler material. This objective was achieved using ultrasonic spray-pyrolysis (USSP) route to produce Ag-CaCO3 with 1, 5 and 10 mol% silver. The size of silver nanoparticles on CaCO3 microspheres could be regulated by adjusting silver concentration to facilitate effective release of Ag+ ions. This was demonstrated in Ag-CaCO3 (1), where the lowest silver content at 1 mol% achieved the highest Ag+ ions release over 28 days. This in turn gave rise to effective antibacterial efficiency against Staphylococcus aureus and Escherichia coli. Furthermore, CaCO3 (1) could also support osteoblast-like cells (MG-63) at a cell viability of 80%. Overall, this work extends the capabilities in employing USSP to produce inorganic filler materials with sustained antibacterial properties, bringing one step closer to the development of antibacterial products.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Carbonato de Cálcio/farmacologia , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana , Prata/farmacologia , Ultrassom
7.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33284134

RESUMO

Extrapulmonary manifestations of COVID-19 are associated with a much higher mortality rate than pulmonary manifestations. However, little is known about the pathogenesis of systemic complications of COVID-19. Here, we create a murine model of SARS-CoV-2-induced severe systemic toxicity and multiorgan involvement by expressing the human ACE2 transgene in multiple tissues via viral delivery, followed by systemic administration of SARS-CoV-2. The animals develop a profound phenotype within 7 days with severe weight loss, morbidity, and failure to thrive. We demonstrate that there is metabolic suppression of oxidative phosphorylation and the tricarboxylic acid (TCA) cycle in multiple organs with neutrophilia, lymphopenia, and splenic atrophy, mirroring human COVID-19 phenotypes. Animals had a significantly lower heart rate, and electron microscopy demonstrated myofibrillar disarray and myocardial edema, a common pathogenic cardiac phenotype in human COVID-19. We performed metabolomic profiling of peripheral blood and identified a panel of TCA cycle metabolites that served as biomarkers of depressed oxidative phosphorylation. Finally, we observed that SARS-CoV-2 induces epigenetic changes of DNA methylation, which affects expression of immune response genes and could, in part, contribute to COVID-19 pathogenesis. Our model suggests that SARS-CoV-2-induced metabolic reprogramming and epigenetic changes in internal organs could contribute to systemic toxicity and lethality in COVID-19.


Assuntos
COVID-19/complicações , Epigênese Genética/imunologia , Insuficiência de Crescimento/etiologia , SARS-CoV-2/patogenicidade , Síndrome de Emaciação/etiologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Animais Geneticamente Modificados , COVID-19/metabolismo , COVID-19/fisiopatologia , COVID-19/virologia , Ciclo do Ácido Cítrico/fisiologia , Metilação de DNA/fisiologia , Modelos Animais de Doenças , Insuficiência de Crescimento/fisiopatologia , Humanos , Imunidade/genética , Masculino , Camundongos , Fosforilação Oxidativa , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2/metabolismo , Síndrome de Emaciação/fisiopatologia
8.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32621799

RESUMO

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Assuntos
Cicatriz/metabolismo , Colágeno Tipo V/deficiência , Colágeno Tipo V/metabolismo , Traumatismos Cardíacos/metabolismo , Contração Miocárdica/genética , Miofibroblastos/metabolismo , Animais , Cicatriz/genética , Cicatriz/fisiopatologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica/genética , Integrinas/antagonistas & inibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacologia , Masculino , Mecanotransdução Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Força Atômica/instrumentação , Microscopia Eletrônica de Transmissão , Contração Miocárdica/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/patologia , Miofibroblastos/ultraestrutura , Análise de Componente Principal , Proteômica , RNA-Seq , Análise de Célula Única
9.
J Clin Invest ; 130(10): 5287-5301, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573492

RESUMO

In the mammalian heart, the left ventricle (LV) rapidly becomes more dominant in size and function over the right ventricle (RV) after birth. The molecular regulators responsible for this chamber-specific differential growth are largely unknown. We found that cardiomyocytes in the neonatal mouse RV had lower proliferation, more apoptosis, and a smaller average size compared with the LV. This chamber-specific growth pattern was associated with a selective activation of p38 mitogen-activated protein kinase (MAPK) activity in the RV and simultaneous inactivation in the LV. Cardiomyocyte-specific deletion of both the Mapk14 and Mapk11 genes in mice resulted in loss of p38 MAPK expression and activity in the neonatal heart. Inactivation of p38 activity led to a marked increase in cardiomyocyte proliferation and hypertrophy but diminished cardiomyocyte apoptosis, specifically in the RV. Consequently, the p38-inactivated hearts showed RV-specific enlargement postnatally, progressing to pulmonary hypertension and right heart failure at the adult stage. Chamber-specific p38 activity was associated with differential expression of dual-specific phosphatases (DUSPs) in neonatal hearts, including DUSP26. Unbiased transcriptome analysis revealed that IRE1α/XBP1-mediated gene regulation contributed to p38 MAPK-dependent regulation of neonatal cardiomyocyte proliferation and binucleation. These findings establish an obligatory role of DUSP/p38/IRE1α signaling in cardiomyocytes for chamber-specific growth in the postnatal heart.


Assuntos
Coração/crescimento & desenvolvimento , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/enzimologia , Animais , Animais Recém-Nascidos , Apoptose , Proliferação de Células , Tamanho Celular , Ativação Enzimática , Feminino , Perfilação da Expressão Gênica , Ventrículos do Coração/citologia , Ventrículos do Coração/enzimologia , Ventrículos do Coração/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/deficiência , Proteínas Quinases Ativadas por Mitógeno/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/enzimologia , Especificidade de Órgãos , Remodelação Vascular/genética , Remodelação Vascular/fisiologia
10.
IJU Case Rep ; 3(4): 121-124, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33392467

RESUMO

INTRODUCTION: Secondary bladder, colon, and rectal cancers are relatively common after prostate radiotherapy. However, secondary squamous cell carcinoma of the prostate is rare. CASE PRESENTATION: An 85-year-old man presented with dysuria and low-serum prostate-specific antigen levels. His medical history included localized prostate adenocarcinoma (Gleason score of 4 + 5) treated with combined three-dimensional conformal radiotherapy and androgen deprivation therapy, 11 years ago. Urethroscopy and magnetic resonance imaging showed a bulging mass around the prostatic urethra. Transurethral resection of the prostate performed for histopathological diagnosis revealed squamous cell carcinoma. CONCLUSION: Hereby, a rare case of secondary squamous cell carcinoma of the prostate after radiotherapy for adenocarcinoma was reported, which was found after 11 years of radiotherapy with symptom of dysuria including urinary hesitancy, difficulty, pain during urination, and low-serum prostate-specific antigen levels.

11.
J Biol Chem ; 293(25): 9652-9661, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29769316

RESUMO

Heart failure is associated with induction of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The serine/threonine protein kinase/endoribonuclease IRE1α is a key protein in ER stress signal transduction. IRE1α activity can induce both protective UPR and apoptotic downstream signaling events, but the specific role for IRE1α activity in the heart is unknown. A major aim of this study was to characterize the specific contribution of IRE1α in cardiac physiology and pathogenesis. We used both cultured myocytes and a transgenic mouse line with inducible and cardiomyocyte-specific IRE1α overexpression as experimental models to achieve targeted IRE1α activation. IRE1α expression induced a potent but transient ER stress response in cardiomyocytes and did not cause significant effects in the intact heart under normal physiological conditions. Furthermore, the IRE1α-activated transgenic heart responding to pressure overload exhibited preserved function and reduced fibrotic area, associated with increased adaptive UPR signaling and with blunted inflammatory and pathological gene expression. Therefore, we conclude that IRE1α induces transient ER stress signaling and confers a protective effect against pressure overload-induced pathological remodeling in the heart. To our knowledge, this report provides first direct evidence of a specific and protective role for IRE1α in the heart and reveals an interaction between ER stress signaling and inflammatory regulation in the pathologically stressed heart.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases/fisiologia , Insuficiência Cardíaca/prevenção & controle , Insulinoma/prevenção & controle , Pressão/efeitos adversos , Substâncias Protetoras/farmacologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Apoptose , Células Cultivadas , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Insulinoma/metabolismo , Insulinoma/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , Resposta a Proteínas não Dobradas
12.
Physiol Rep ; 5(11)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28576852

RESUMO

Cardiovascular dysautonomia as well as the deterioration of circadian rhythms are among the earliest detectable pathophysiological changes in individuals with Huntington's disease (HD). Preclinical research requires mouse models that recapitulate disease symptoms and the Q175 knock-in model offers a number of advantages but potential autonomic dysfunction has not been explored. In this study, we sought to test the dual hypotheses that cardiovascular dysautonomia can be detected early in disease progression in the Q175 model and that this dysfunction varies with the daily cycle. Using radiotelemetry implants, we observed a significant reduction in the diurnal and circadian activity rhythms in the Q175 mutants at the youngest ages. By middle age, the autonomically driven rhythms in core body temperature were highly compromised, and the Q175 mutants exhibited striking episodes of hypothermia that increased in frequency with mutant huntingtin gene dosage. In addition, Q175 mutants showed higher resting heart rate (HR) during sleep and greatly reduced correlation between activity and HR HR variability was reduced in the mutants in both time and frequency domains, providing more evidence of autonomic dysfunction. Measurement of the baroreceptor reflex revealed that the Q175 mutant could not appropriately increase HR in response to a pharmacologically induced decrease in blood pressure. Echocardiograms showed reduced ventricular mass and ejection fraction in mutant hearts. Finally, cardiac histopathology revealed localized points of fibrosis resembling those caused by myocardial infarction. Thus, the Q175 mouse model of HD exhibits cardiovascular dysautonomia similar to that seen in HD patients with prominent sympathetic dysfunction during the resting phase of the activity rhythm.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Coração/fisiopatologia , Proteína Huntingtina/genética , Doença de Huntington/fisiopatologia , Animais , Barorreflexo , Pressão Sanguínea , Temperatura Corporal , Ritmo Circadiano , Coração/inervação , Frequência Cardíaca , Doença de Huntington/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Volume Sistólico
13.
J Biol Chem ; 292(31): 12787-12800, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28637870

RESUMO

Stress-induced p38 mitogen-activated protein kinase (MAPK) activity is implicated in pathological remodeling in the heart. For example, constitutive p38 MAPK activation in cardiomyocytes induces pathological features, including myocyte hypertrophy, apoptosis, contractile dysfunction, and fetal gene expression. However, the physiological function of cardiomyocyte p38 MAPK activity in beneficial compensatory vascular remodeling is unclear. This report investigated the functional role and the underlying mechanisms of cardiomyocyte p38 MAPK activity in cardiac remodeling induced by chronic stress. Using both in vitro and in vivo model systems, we found that p38 MAPK activity is required for hypoxia-induced pro-angiogenic activity from cardiomyocytes and that p38 MAPK activation in cardiomyocyte is sufficient to promote paracrine signaling-mediated, pro-angiogenic activity. We further demonstrate that VEGF is a paracrine factor responsible for the p38 MAPK-mediated pro-angiogenic activity from cardiomyocytes and that p38 MAPK pathway activation is sufficient for inducing VEGF secretion from cardiomyocytes in an Sp1-dependent manner. More significantly, cardiomyocyte-specific inactivation of p38α in mouse heart impaired compensatory angiogenesis after pressure overload and promoted early onset of heart failure. In summary, p38αMAPK has a critical role in the cross-talk between cardiomyocytes and vasculature by regulating stress-induced VEGF expression and secretion in cardiomyocytes. We conclude that as part of a stress-induced signaling pathway, p38 MAPK activity significantly contributes to both pathological and compensatory remodeling in the heart.


Assuntos
Endotélio Vascular/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Isquemia Miocárdica/metabolismo , Revascularização Miocárdica , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Hipóxia Celular , Células Cultivadas , Cruzamentos Genéticos , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Ativação Enzimática , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Knockout , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Interferência de RNA , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Sus scrofa , Fator A de Crescimento do Endotélio Vascular/agonistas , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/agonistas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Biomed Mater Eng ; 28(1): 57-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28269745

RESUMO

BACKGROUND: There is a strong impetus for the development of alternative treatments for bone disease that avoid the complications associated with autografts and allografts. To address this, we previously developed porous apatite-fiber scaffolds (AFSs) which have three-dimensional interconnected pores, and constructed tissue-engineered bone by culturing rat bone marrow cells (RBMCs) using AFSs in a radial-flow bioreactor (RFB). OBJECTIVE: To generate additional baseline data for the development of tissue-engineered bone constructed for clinical application using a RFB, we cultured RBMCs using AFSs under static conditions (hereafter, RBMC AFS culture), and monitored RBMC growth and differentiation characteristics in vitro, and two weeks after subcutaneous inoculation into recipient rats. METHODS: RBMCs were seeded to AFSs and growth, differentiation and calcification were monitored in vitro and in vivo by histological evaluation using hematoxylin eosin, alkaline phosphatase and alizarin red S stains. RESULTS: RBMCs in/on AFSs proliferated and differentiated normally in vitro and in vivo, and calcification was evident two weeks after subcutaneous AFS culture implantation. Histological assays revealed that AFSs and RBMC AFS cultures were biocompatible, and did not induce inflammation or immunological rejection in vivo. CONCLUSIONS: These findings suggest that AFSs are a conducive microenvironment for bone regeneration and are well tolerated in vivo. The results provide valuable baseline data for the design of implant studies using tissue-engineered bone constructed by RFB.


Assuntos
Apatitas/química , Osso e Ossos/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Tela Subcutânea/ultraestrutura , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Osteogênese , Ratos , Ratos Wistar , Tela Subcutânea/cirurgia
15.
Sci Rep ; 7: 42209, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165052

RESUMO

Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the "digital murine heart" to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.


Assuntos
Imageamento Tridimensional , Miocárdio/citologia , Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Calibragem , Linhagem da Célula , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/citologia , Camundongos , Microscopia de Fluorescência , Canais de Potássio/metabolismo
16.
Nat Med ; 22(10): 1131-1139, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27618650

RESUMO

Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2). This interaction, which is mediated by a 66-mer motif in Chaer, interferes with PRC2 targeting to genomic loci, thereby inhibiting histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy. The interaction between Chaer and PRC2 is transiently induced after hormone or stress stimulation in a process involving mammalian target of rapamycin complex 1, and this interaction is a prerequisite for epigenetic reprogramming and induction of genes involved in hypertrophy. Inhibition of Chaer expression in the heart before, but not after, the onset of pressure overload substantially attenuates cardiac hypertrophy and dysfunction. Our study reveals that stress-induced pathological gene activation in the heart requires a previously uncharacterized lncRNA-dependent epigenetic checkpoint.


Assuntos
Cardiomegalia/genética , Epigênese Genética/genética , Coração/diagnóstico por imagem , Código das Histonas/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/genética , Animais , Northern Blotting , Cardiomegalia/metabolismo , Imunoprecipitação da Cromatina , Simulação por Computador , Ecocardiografia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Hibridização in Situ Fluorescente , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas , Alvo Mecanístico do Complexo 1 de Rapamicina , Metilação , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR/metabolismo
17.
Gene ; 575(2 Pt 2): 369-376, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26390817

RESUMO

p38 kinases are members of the mitogen-activated protein kinases (MAPK) with established contribution to a wide range of signaling pathways and different biological processes. The prototypic p38 MAPK, p38α was originally identified as an essential signaling kinase for inflammatory cytokine production Extensive studies have now revealed that p38s have critical roles in many different tissues far beyond immune regulation and inflammatory responses. In this review, we will focus on the structure and molecular biology of p38s, and their specific roles in heart, especially regarding myocyte proliferation, apoptosis, and hypertrophic responses.


Assuntos
Cardiomegalia/enzimologia , Miocárdio/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apoptose , Proliferação de Células , Humanos , Sistema de Sinalização das MAP Quinases , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/química
18.
Am J Physiol Heart Circ Physiol ; 310(1): H92-103, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519028

RESUMO

Sarcolipin (SLN) is a small proteolipid and a regulator of sarco(endo)plasmic reticulum Ca(2+)-ATPase. In heart tissue, SLN is exclusively expressed in the atrium. Previously, we inserted Cre recombinase into the endogenous SLN locus by homologous recombination and succeeded in generating SLN-Cre knockin (Sln(Cre/+)) mice. This Sln(Cre/+) mouse can be used to generate an atrium-specific gene-targeting mutant, and it is based on the Cre-loxP system. In the present study, we used adult Sln(Cre/+) mice atria and analyzed the effects of heterozygous SLN deletion by Cre knockin before use as the gene targeting mouse. Both SLN mRNA and protein levels were decreased in Sln(Cre/+) mouse atria, but there were no morphological, physiological, or molecular biological abnormalities. The properties of contractility and Ca(2+) handling were similar to wild-type (WT) mice, and expression levels of several stress markers and sarcoplasmic reticulum-related protein levels were not different between Sln(Cre/+) and WT mice. Moreover, there was no significant difference in sarco(endo)plasmic reticulum Ca(2+)-ATPase activity between the two groups. We showed that Sln(Cre/+) mice were not significantly different from WT mice in all aspects that were examined. The present study provides basic characteristics of Sln(Cre/+) mice and possibly information on the usefulness of Sln(Cre/+) mice as an atrium-specific gene-targeting model.


Assuntos
Deleção de Genes , Heterozigoto , Proteínas Musculares/genética , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Proteolipídeos/genética , Função Ventricular Esquerda/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/genética , Feminino , Fibrose , Genótipo , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/deficiência , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenótipo , Proteolipídeos/deficiência , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
19.
PLoS One ; 9(4): e94895, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736499

RESUMO

Ductus arteriosus (DA) closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP) stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.


Assuntos
Canal Arterial/metabolismo , Neointima/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Gravidez , RNA Mensageiro/genética , Ratos , Receptores de Tromboxano A2 e Prostaglandina H2/agonistas , Receptores de Tromboxano A2 e Prostaglandina H2/genética
20.
Nat Genet ; 46(6): 635-639, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24777450

RESUMO

Dilated cardiomyopathy (DCM) is a highly heterogeneous trait with sarcomeric gene mutations predominating. The cause of a substantial percentage of DCMs remains unknown, and no gene-specific therapy is available. On the basis of resequencing of 513 DCM cases and 1,150 matched controls from various cohorts of distinct ancestry, we discovered rare, functional RAF1 mutations in 3 of the cohorts (South Indian, North Indian and Japanese). The prevalence of RAF1 mutations was ~9% in childhood-onset DCM cases in these three cohorts. Biochemical studies showed that DCM-associated RAF1 mutants had altered kinase activity, resulting in largely unaltered ERK activation but in AKT that was hyperactivated in a BRAF-dependent manner. Constitutive expression of these mutants in zebrafish embryos resulted in a heart failure phenotype with AKT hyperactivation that was rescued by treatment with rapamycin. These findings provide new mechanistic insights and potential therapeutic targets for RAF1-associated DCM and further expand the clinical spectrum of RAF1-related human disorders.


Assuntos
Cardiomiopatia Dilatada/genética , Mutação , Proteínas Proto-Oncogênicas c-raf/genética , Adulto , Idade de Início , Idoso , Sequência de Aminoácidos , Animais , Cardiomiopatia Dilatada/etnologia , Estudos de Casos e Controles , Estudos de Coortes , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Índia , Japão , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Prevalência , Homologia de Sequência de Aminoácidos , Sirolimo/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA