Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Virol ; 67(1): 99-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950890

RESUMO

The major protective immune response against viruses is the production of type I and III interferons (IFNs). IFNs induce the expression of hundreds of IFN-stimulated genes (ISGs) that block viral replication and further viral spread. In this report, we analyzed the expression of IFNs and some ISGs (MxA, PKR, OAS-1, IFIT-1, RIG-1, MDA5, SOCS-1) in alveolar epithelial cells (A549) in response to infection with influenza A viruses (A/California/07/09 (H1N1pdm); A/Texas/50/12 (H3N2)); influenza B virus (B/Phuket/3073/13); adenovirus type 5 and 6; or respiratory syncytial virus (strain A2). Influenza B virus had the ability to most rapidly induce IFNs and ISGs as well as to stimulate excessive IFN-α, IFN-ß and IFN-λ secretion. It seems curious that IAV H1N1pdm did not induce IFN-λ secretion, but enhanced type I IFN and interleukin (IL)-6 production. We emphasized the importance of the negative regulation of virus-triggered signaling and cellular IFN response. We showed a decrease in IFNLR1 mRNA in the case of IBV infection. The attenuation of SOCS-1 expression in IAV H1N1pdm can be considered as the inability of the system to restore the immune status. Presumably, the lack of negative feedback loop regulation of proinflammatory immune response may be a factor contributing to the particular pathogenicity of several strains of influenza. Keywords: lambda interferons; MxA; influenza; respiratory syncytial virus; A549 cells.


Assuntos
Influenza Humana , Interferon lambda , Humanos , Influenza Humana/genética , Vírus da Influenza A Subtipo H3N2 , Interferons/genética , Interferons/farmacologia , Interferon-alfa/genética , Expressão Gênica
2.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555794

RESUMO

Whole genome sequencing (WGS) is considered the best instrument to track both virus evolution and the spread of new, emerging variants. However, WGS still does not allow the analysis of as many samples as qPCR does. Epidemiological and clinical research needs to develop advanced qPCR methods to identify emerging variants of SARS-CoV-2 while collecting data on their spreading in a faster and cheaper way, which is critical for introducing public health measures. This study aimed at designing a one-step RT-qPCR assay for multiplex detection of the Omicron lineage and providing additional data on its subvariants in clinical samples. The RT-qPCR assay demonstrated high sensitivity and specificity on multiple SARS-CoV-2 variants and was cross-validated by WGS.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Bioensaio , Saúde Pública
3.
ACS Appl Mater Interfaces ; 10(41): 34849-34868, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30230807

RESUMO

The incorporation of bioactive compounds onto polymer fibrous scaffolds with further control of drug release kinetics is essential to improve the functionality of scaffolds for personalized drug therapy and regenerative medicine. In this study, polymer and hybrid microcapsules were prepared and used as drug carriers, which are further deposited onto polymer microfiber scaffolds [polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and PHB doping with the conductive polyaniline (PANi) of 2 wt % (PHB-PANi)]. The number of immobilized microcapsules decreased with increase in their ζ-potential due to electrostatic repulsion with the negatively charged fiber surface, depending on the polymer used for the scaffold's fabrication. Additionally, the immobilization of the capsules in dynamic mechanical conditions at a frequency of 10 Hz resulted in an increase in the number of the capsules on the fibers with increase in the scaffold piezoelectric response in the order PCL < PHB < PHB-PANi, depending on the chemical composition of the capsules. The immobilization of microcapsules loaded with different bioactive molecules onto the scaffold surface enabled multimodal triggering by physical (ultrasound, laser radiation) and biological (enzymatic treatment) stimuli, providing controllable release of the cargo from scaffolds. Importantly, the microcapsules immobilized onto the surface of the scaffolds did not influence the cell growth, viability, and cell proliferation on the scaffolds. Moreover, the attachment of human mesenchymal stem cells (hMSCs) on the scaffolds revealed that the PHB and PHB-PANi scaffolds promoted adhesion of hMSCs compared to that of the PCL scaffolds. Two bioactive compounds, antibiotic ceftriaxone sodium (CS) and osteogenic factor dexamethasone (DEXA), were chosen to load the microcapsules and demonstrate the antimicrobial properties and osteogenesis of the scaffolds. The modified scaffolds had prolonged release of CS or DEXA, which provided an improved antimicrobial effect, as well as enhanced osteogenic differentiation and mineralization of the scaffolds modified with capsules compared to that of individual scaffolds soaked in CS solution or incubated in an osteogenic medium. Thus, the immobilization of microcapsules provides a simple, convenient way to incorporate bioactive compounds onto polymer scaffolds, which makes these multimodal materials suitable for personalized drug therapy and bone tissue engineering.


Assuntos
Antibacterianos , Ceftriaxona , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Antibacterianos/química , Antibacterianos/farmacologia , Cápsulas , Ceftriaxona/química , Ceftriaxona/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Poliésteres/farmacologia , Proibitinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA