Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3817, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438372

RESUMO

Measurement-based quantum computation with optical time-domain multiplexing is a promising method to realize a quantum computer from the viewpoint of scalability. Fault tolerance and universality are also realizable by preparing appropriate resource quantum states and electro-optical feedforward that is altered based on measurement results. While linear feedforward has been realized and become a common experimental technique, nonlinear feedforward was unrealized until now. In this paper, we demonstrate that a fast and flexible nonlinear feedforward realizes the essential measurement required for fault-tolerant and universal quantum computation. Using non-Gaussian ancillary states, we observed 10% reduction of the measurement excess noise relative to classical vacuum ancilla.

2.
Opt Express ; 27(23): 34416-34433, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878489

RESUMO

Entangled measurement is a crucial tool in quantum technology. We propose a new entanglement measure of multi-mode detection, which estimates the amount of entanglement that can be created in a measurement. To illustrate the proposed measure, we perform quantum tomography of a two-mode detector that is comprised of two superconducting nanowire single photon detectors. Our method utilizes coherent states as probe states, which can be easily prepared with accuracy. Our work shows that a separable state such as a coherent state is enough to characterize a potentially entangled detector. We investigate the entangling capability of the detector in various settings. Our proposed measure verifies that the detector makes an entangled measurement under certain conditions, and reveals the nature of the entangling properties of the detector. Since the precise characterization of a detector is essential for applications in quantum information technology, the experimental reconstruction of detector properties along with the proposed measure will be key features in future quantum information processing.

3.
Science ; 366(6463): 373-376, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624214

RESUMO

Entanglement is the key resource for measurement-based quantum computing. It is stored in quantum states known as cluster states, which are prepared offline and enable quantum computing by means of purely local measurements. Universal quantum computing requires cluster states that are both large and possess (at least) a two-dimensional topology. Continuous-variable cluster states-based on bosonic modes rather than qubits-have previously been generated on a scale exceeding one million modes, but only in one dimension. Here, we report generation of a large-scale two-dimensional continuous-variable cluster state. Its structure consists of a 5- by 1240-site square lattice that was tailored to our highly scalable time-multiplexed experimental platform. It is compatible with Bosonic error-correcting codes that, with higher squeezing, enable fault-tolerant quantum computation.

4.
Opt Express ; 27(3): 2327-2334, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732271

RESUMO

We experimentally demonstrate a fiber-based phase tracking system through an adaptive homodyne detection technique. In the experiment, we use a random phase signal as an example. The system works well when the random phase varies between -2.4 and + 2.4 radians. Such tracking range is much larger than previous work due to the improved performance of phase-locked loop. The minimum mean square error reaches theoretical value at a photon flux of ~106, which proves a quantum-limited fiber phase tracking. Such system has potential applications in high-precision real-time fiber sensing of temperature, strain, and so on.

5.
Sci Adv ; 4(12): eaat9331, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30539143

RESUMO

Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of - 1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states.

6.
Phys Rev Lett ; 121(14): 143602, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339432

RESUMO

We propose a method to subtract a photon from a double sideband mode of continuous-wave light. The central idea is to use phase modulation as a frequency sideband beam splitter in the heralding photon subtraction scheme, where a small portion of the sideband mode is down-converted to 0 Hz to provide a trigger photon. An optical cat state is created by applying the proposed method to a squeezed state at 500 MHz sideband, which is generated by an optical parametric oscillator. The Wigner function of the cat state reconstructed from a direct homodyne measurement of the 500 MHz sideband modes shows the negativity of W(0,0)=-0.088±0.001 without any loss corrections.

7.
Opt Express ; 25(2): 573-586, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28157947

RESUMO

Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity's characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

8.
Phys Rev Lett ; 116(23): 233602, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341231

RESUMO

Real-time controls based on quantum measurements are powerful tools for various quantum protocols. However, their experimental realization has been limited by mode mismatch between the temporal mode of quadrature measurement and that heralded by photon detection. Here, we demonstrate real-time quadrature measurement of a single-photon wave packet induced by photon detection by utilizing continuous temporal-mode matching between homodyne detection and an exponentially rising temporal mode. Single photons in exponentially rising modes are also expected to be useful resources for interactions with other quantum systems.

9.
Phys Rev Lett ; 111(16): 163602, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182266

RESUMO

We experimentally demonstrate optomechanical motion and force measurements near the quantum precision limits set by the quantum Cramér-Rao bounds. Optical beams in coherent and phase-squeezed states are used to measure the motion of a mirror under an external stochastic force. Utilizing optical phase tracking and quantum smoothing techniques, we achieve position, momentum, and force estimation accuracies close to the quantum Cramér-Rao bounds with the coherent state, while the estimation using squeezed states shows clear quantum enhancements beyond the coherent-state bounds.

10.
Opt Express ; 21(5): 5529-35, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23482124

RESUMO

We develop an experimental scheme based on a continuous-wave (cw) laser for generating arbitrary superpositions of photon number states. In this experiment, we successfully generate superposition states of zero to three photons, namely advanced versions of superpositions of two and three coherent states. They are fully compatible with developed quantum teleportation and measurement-based quantum operations with cw lasers. Due to achieved high detection efficiency, we observe, without any loss correction, multiple areas of negativity of Wigner function, which confirm strongly nonclassical nature of the generated states.

11.
Science ; 337(6101): 1514-7, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22997332

RESUMO

Tracking a randomly varying optical phase is a key task in metrology, with applications in optical communication. The best precision for optical-phase tracking has until now been limited by the quantum vacuum fluctuations of coherent light. Here, we surpass this coherent-state limit by using a continuous-wave beam in a phase-squeezed quantum state. Unlike in previous squeezing-enhanced metrology, restricted to phases with very small variation, the best tracking precision (for a fixed light intensity) is achieved for a finite degree of squeezing because of Heisenberg's uncertainty principle. By optimizing the squeezing, we track the phase with a mean square error 15 ± 4% below the coherent-state limit.

12.
Opt Express ; 18(19): 20143-50, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-20940905

RESUMO

We generate squeezed state of light at 860 nm with a monolithic optical parametric oscillator. The optical parametric oscillator consists of a periodically poled KTiOPO(4) crystal, both ends of which are spherically polished and mirror-coated. We achieve both phase matching and cavity resonance by controlling only the temperature of the crystal. We observe up to -8.0±0.2 dB of squeezing with the bandwidth of 142 MHz. Our technique makes it possible to drive many monolithic cavities simultaneously by a single laser. Hence our monolithic optical parametric oscillator is quite suitable to continuous-variable quantum information experiments where we need a large number of highly squeezed light beams.


Assuntos
Amplificadores Eletrônicos , Lasers , Lentes , Iluminação/instrumentação , Oscilometria/instrumentação , Desenho de Equipamento , Retroalimentação , Temperatura
13.
Phys Rev Lett ; 99(11): 110503, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17930422

RESUMO

We demonstrate an unconditional high-fidelity teleporter capable of preserving the broadband entanglement in an optical squeezed state. In particular, we teleport a squeezed state of light and observe -0.8+/-0.2 dB of squeezing in the teleported (output) state. We show that the squeezing criterion translates directly into a sufficient criterion for entanglement of the upper and lower sidebands of the optical field. Thus, this result demonstrates the first unconditional teleportation of broadband entanglement. Our teleporter achieves sufficiently high fidelity to allow the teleportation to be cascaded, enabling, in principle, the construction of deterministic non-Gaussian operations.

14.
Opt Express ; 15(7): 4321-7, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19532677

RESUMO

We observe -9.01+/-0.14 dB of squeezing and +15.12+/-0.14 dB of antisqueezing with a local oscillator phase locked in homodyne measurement. Suzuki et al. have pointed out two main factors in [Appl. Phys. Lett. 89, 061116 (2006)], which degrade the observed squeezing level:phase fluctuation in homodyne measurement and intracavity losses of an optical parametric oscillator for squeezing. We have improved the phase stability of homodyne measurement and have reduced the intracavity losses. We measure pump power dependences of the squeezing and antisqueezing levels, which show good agreement with theoretical calculations taking account of the phase fluctuation.

15.
Phys Rev Lett ; 96(6): 060504, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16605976

RESUMO

We demonstrate unconditional telecloning for the first time. In particular, we symmetrically and unconditionally teleclone coherent states of light from one sender to two receivers, achieving a fidelity for each clone of F = 0.58 +/- 0.01, which surpasses the classical limit. This is a manipulation of a new type of multipartite entanglement whose nature is neither purely bipartite nor purely tripartite.

16.
Phys Rev Lett ; 94(22): 220502, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-16090375

RESUMO

We experimentally demonstrate continuous-variable quantum teleportation beyond the no-cloning limit. We teleport a coherent state and achieve the fidelity of 0.70 +/- 0.02 that surpasses the no-cloning limit of 2/3. Surpassing the limit is necessary to transfer the nonclassicality of an input quantum state. By using our high-fidelity teleporter, we demonstrate entanglement swapping, namely, teleportation of quantum entanglement, as an example of transfer of nonclassicality.

17.
Nature ; 431(7007): 430-3, 2004 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-15386006

RESUMO

Quantum teleportation involves the transportation of an unknown quantum state from one location to another, without physical transfer of the information carrier. Although quantum teleportation is a naturally bipartite process, it can be extended to a multipartite protocol known as a quantum teleportation network. In such a network, entanglement is shared between three or more parties. For the case of three parties (a tripartite network), teleportation of a quantum state can occur between any pair, but only with the assistance of the third party. Multipartite quantum protocols are expected to form fundamental components for larger-scale quantum communication and computation. Here we report the experimental realization of a tripartite quantum teleportation network for quantum states of continuous variables (electromagnetic field modes). We demonstrate teleportation of a coherent state between three different pairs in the network, unambiguously demonstrating its tripartite character.

18.
Phys Rev Lett ; 91(8): 080404, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-14525227

RESUMO

A continuous-variable tripartite entangled state is experimentally generated by combining three independent squeezed vacuum states, and the variances of its relative positions and total momentum are measured. We show that the measured values violate the separability criteria based on the sum of these quantities and prove the full inseparability of the generated state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA