Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 78(10): 2581-2590, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37671807

RESUMO

OBJECTIVES: The rise of MDR Gram-negative bacteria (GNB), especially those resistant to last-resort drugs such as carbapenems and colistin, is a global health risk and calls for increased efforts to discover new antimicrobial compounds. We previously reported that polyimidazolium (PIM) compounds exhibited significant antimicrobial activity and minimal mammalian cytotoxicity. However, their mechanism of action is relatively unknown. We examined the efficacy and mechanism of action of a hydrophilic PIM (PIM5) against colistin- and meropenem-resistant clinical isolates. METHODS: MIC and time-kill testing was performed for drug-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. N-phenyl-1-naphthylamine and propidium iodide dyes were employed to determine membrane permeabilization. Spontaneous resistant mutants and single deletion mutants were generated to understand potential resistance mechanisms to the drug. RESULTS: PIM5 had the same effectiveness against colistin- and meropenem-resistant strains as susceptible strains of GNB. PIM5 exhibited a rapid bactericidal effect independent of bacterial growth phase and was especially effective in water. The polymer disrupts both the outer and cytoplasmic membranes. PIM5 binds and intercalates into bacterial genomic DNA upon entry of cells. GNB do not develop high resistance to PIM5. However, the susceptibility and uptake of the polymer is moderately affected by mutations in the two-component histidine kinase sensor BaeS. PIM5 has negligible cytotoxicity on human cells at bacterial-killing concentrations, comparable to the commercial antibiotics polymyxin B and colistin. CONCLUSIONS: PIM5 is a potent broad-spectrum antibiotic targeting GNB resistant to last-resort antibiotics.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Colistina/farmacologia , Meropeném/farmacologia , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Mamíferos
2.
mBio ; 14(4): e0129723, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37530523

RESUMO

Hypervirulent Klebsiella pneumoniae causes liver abscess and potentially devastating metastatic complications. The majority of Klebsiella-induced liver abscess are caused by the CG23-I sublineage of hypervirulent Klebsiella pneumoniae. This and some other lineages possess a >200-kb virulence plasmid. We discovered a novel protein IroP nestled in the virulence plasmid-encoded salmochelin operon that cross-regulates and suppresses the promoter activity of chromosomal type 3 fimbriae (T3F) gene transcription. IroP is itself repressed by iron through the ferric uptake regulator. Iron-rich conditions increase T3F and suppress capsule mucoviscosity, leading to biofilm formation and cell adhesion. Conversely, iron-poor conditions cause a transcriptional switch to hypermucoid capsule production and T3F repression. The likely acquisition of iroP on mobile genetic elements and successful adaptive integration into the genetic circuitry of a major lineage of hypervirulent K. pneumoniae reveal a powerful example of plasmid chromosomal cross talk that confers an evolutionary advantage. Our discovery also addresses the conundrum of how the hypermucoid capsule that impedes adhesion could be regulated to facilitate biofilm formation and colonization. The acquired ability of the bacteria to alternate between a state favoring dissemination and one that favors colonization in response to iron availability through transcriptional regulation offers novel insights into the evolutionary success of this pathogen. IMPORTANCE Hypervirulent Klebsiella pneumoniae contributes to the majority of monomicrobial-induced liver abscess infections that can lead to several other metastatic complications. The large virulence plasmid is highly stable in major lineages, suggesting that it provides survival benefits. We discovered a protein IroP encoded on the virulence plasmid that suppresses expression of the type 3 fimbriae. IroP itself is regulated by iron, and we showed that iron regulates hypermucoid capsule production while inversely regulating type 3 fimbriae expression through IroP. The acquisition and integration of this inverse transcriptional switch between fimbriae and capsule mucoviscosity shows an evolved sophisticated plasmid-chromosomal cross talk that changes the behavior of hypervirulent K. pneumoniae in response to a key nutrient that could contribute to the evolutionary success of this pathogen.

3.
Antimicrob Agents Chemother ; 67(5): e0035523, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37125913

RESUMO

The treatment of bacterial infections is becoming increasingly challenging with the emergence of antimicrobial resistance. Thus, the development of antimicrobials with novel mechanisms of action is much needed. Previously, we designed several cationic main-chain imidazolium compounds and identified the polyimidazolium PIM1 as a potent antibacterial against a wide panel of multidrug-resistant nosocomial pathogens, and it had relatively low toxicity against mammalian epithelial cells. However, little is known about the mechanism of action of PIM1. Using an oligomeric version of PIM1 with precisely six repeating units (OIM1-6) to control for consistency, we showed that OIM1-6 relies on an intact membrane potential for entry into the bacterial cytoplasm, as resistant mutants to OIM1-6 have mutations in their electron transport chains. These mutants demonstrate reduced uptake of the compound, which can be circumvented through the addition of a sub-MIC dose of colistin. Once taken up intracellularly, OIM1-6 exerts double-stranded DNA breaks. Its potency and ability to kill represents a promising class of drugs that can be combined with membrane-penetrating drugs to potentiate activity and hedge against the rise of resistant mutants. In summary, we discovered that cationic antimicrobial OIM1-6 exhibits an antimicrobial property that is dissimilar to the conventional cationic antimicrobial compounds. Its killing mechanism does not involve membrane disruption but instead depends on the membrane potential for uptake into bacterial cells so that it can exert its antibacterial effect intracellularly.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , DNA Bacteriano , Potenciais da Membrana , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana , Mamíferos
4.
Nat Microbiol ; 7(10): 1516-1524, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109646

RESUMO

Long-term colonization of the gut microbiome by carbapenemase-producing Enterobacteriaceae (CPE) is a growing area of public health concern as it can lead to community transmission and rapid increase in cases of life-threatening CPE infections. Here, leveraging the observation that many subjects are decolonized without interventions within a year, we used longitudinal shotgun metagenomics (up to 12 timepoints) for detailed characterization of ecological and evolutionary dynamics in the gut microbiome of a cohort of CPE-colonized subjects and family members (n = 46; 361 samples). Subjects who underwent decolonization exhibited a distinct ecological shift marked by recovery of microbial diversity, key commensals and anti-inflammatory pathways. In addition, colonization was marked by elevated but unstable Enterobacteriaceae abundances, which exhibited distinct strain-level dynamics for different species (Escherichia coli and Klebsiella pneumoniae). Finally, comparative analysis with whole-genome sequencing data from CPE isolates (n = 159) helped identify substrain variation in key functional genes and the presence of highly similar E. coli and K. pneumoniae strains with variable resistance profiles and plasmid sharing. These results provide an enhanced view into how colonization by multi-drug-resistant bacteria associates with altered gut ecology and can enable transfer of resistance genes, even in the absence of overt infection and antibiotic usage.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Microbioma Gastrointestinal , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Escherichia coli/genética , Humanos , Klebsiella pneumoniae/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
5.
Emerg Infect Dis ; 28(8): 1578-1588, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876475

RESUMO

Dissemination of carbapenemase-encoding plasmids by horizontal gene transfer in multidrug-resistant bacteria is the major driver of rising carbapenem-resistance, but the conjugative mechanics and evolution of clinically relevant plasmids are not yet clear. We performed whole-genome sequencing on 1,215 clinical Enterobacterales isolates collected in Singapore during 2010-2015. We identified 1,126 carbapenemase-encoding plasmids and discovered pKPC2 is becoming the dominant plasmid in Singapore, overtaking an earlier dominant plasmid, pNDM1. pKPC2 frequently conjugates with many Enterobacterales species, including hypervirulent Klebsiella pneumoniae, and maintains stability in vitro without selection pressure and minimal adaptive sequence changes. Furthermore, capsule and decreasing taxonomic relatedness between donor and recipient pairs are greater conjugation barriers for pNDM1 than pKPC2. The low fitness costs pKPC2 exerts in Enterobacterales species indicate previously undetected carriage selection in other ecological settings. The ease of conjugation and stability of pKPC2 in hypervirulent K. pneumoniae could fuel spread into the community.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos , Proteínas de Bactérias/genética , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Plasmídeos/genética , Singapura/epidemiologia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA