Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pediatr ; 11: 1131573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274815

RESUMO

Background: Rehabilitation of upper limb function can be challenging in children with brain lesion. Recent virtual reality (VR) rehabilitation may be an additional treatment option in pediatric rehabilitation. Objectives: To assess the feasibility and effectiveness of a home-based VR-enhanced rehabilitation program with wearable multi-inertial measurement unit (IMU) sensors on upper limb functions in children with brain injury. Methods: This multicenter single blind randomized controlled trial included 40 children with cerebral palsy (CP) or static brain injury. Subjects were randomized 1:1 to experimental and control group. Both the groups maintained the same therapeutic content and dose of occupational therapy during the intervention period. The experimental group performed additional training at home using the VR-enhanced program for at least 30 min/day, 5 days/week, for 6 weeks. VR training consisted of daily activities or games promoting wrist and forearm articular movements using wearable IMU sensors. The Melbourne Assessment of Unilateral Upper Limb Function-version 2 (MA2), Upper Limb Physician's Rating Scale (ULPRS), Pediatric Evaluation of Disability Inventory-computer adaptive test (PEDI-CAT), computerized 3D motion analysis, and user satisfaction survey were performed. Mann-Whitney U test was used to compare treatment effects between groups, and Friedman and Wilcoxon signed-rank tests were used to compare pre and post intervention. Results: Overall 35 children (15 in VR group and 20 in control group) completed the protocol. In the experimental group, an average VR training time was 855 min. The accuracy of motion measured by MA2, segmental movements by ULPRS, daily living capability and social cognitive function by PEDI-CAT, movement time and shoulder movement pattern by motion analysis showed significant improvements. However, there were no significant differences in any of the functional outcome measures compared to the control group. All the children and parents reported positive experiences. Conclusions: Home-based VR training though it had limited impact on improving upper limb function, it could help improve social cognitive function, movement pattern, and efficiency in children with brain injury and could be an effective means of extending clinical therapy to the home. Clinical Trial Registration: CRIS.nih.go.kr: identifier KCT0003172.

2.
Gait Posture ; 91: 326-331, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246774

RESUMO

BACKGROUND: There are various tools that measure upper limb function in children with cerebral palsy(CP) clinically, but these measurement methods are examiner-dependent and scale values are not proportional to the upper limb function which makes it difficult to quantify the function. RESEARCH QUESTION: The purpose of this study was to investigate whether the new parameters derived from 3D motion analysis reflect the upper limb function which measured by Melbourne Assessment 2 (MA2) in children with cerebral palsy (CP) compared to the clinical measurements. METHODS: Forty children with CP (24 boys, 16 girls; mean [SD] age, 6 years 11 months [3 years 5 months]) were recruited. Motion capture was conducted during phases T1-T4 of Reach and Grasp Cycles. New parameters (movement time, number of movement units, index of curvature) were derived from wrist marker data. Range of motion (ROM), accuracy, dexterity, and fluency of unilateral upper limb function were assessed using MA2. Spearman rank coefficients were determined to evaluate correlations between MA2 and the new parameters. RESULTS AND SIGNIFICANCE: Index of curvature correlated negatively with MA2 accuracy scores during T1 (rs -0.347, p < 0.05), T2 (rs -0.471, p < 0.01), and T3 (rs -0.660, p < 0.01). Number of movement units correlated negatively with MA2 ROM, accuracy, and fluency scores during T1 (ROM rs -0.334; accuracy rs -0.331; fluency rs -0.375; p < 0.05) and T3 (ROM rs -0.499; accuracy rs -0.531; fluency rs -0.515; p < 0.01). Index of curvature and number of movement units are objective, simple parameters showing fair to good correlation with MA2 accuracy and fluency of upper limb function.


Assuntos
Paralisia Cerebral , Criança , Feminino , Humanos , Masculino , Movimento (Física) , Movimento , Amplitude de Movimento Articular , Extremidade Superior
3.
Gait Posture ; 92: 110-115, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839205

RESUMO

BACKGROUND: Center-of-pressure (CoP) measurements have been studied for assessing balance control. While CoP measurements using force plates have been used to assess standing balance in children with cerebral palsy (CP), it has not been assessed in a sitting position, which specifically reflects trunk postural control. RESEARCH QUESTION: The purpose of this study was to compare CoP measurements using force plates during both standing and sitting trials with the Pediatric Balance Scale (PBS) in children with spastic CP. METHODS: We recruited 26 children with spastic CP (7.8 ±â€¯3.4 years, 4-13 years) and used the PBS, a validated evaluation tool that measures static and dynamic balance control. We took CoP measurements using force plates during sitting and standing. For both trials, subjects stayed still for 10 s with their eyes open or closed. We calculated the CoP velocity, mediolateral (ML) and anteroposterior (AP) velocity, and ML and AP displacements of CoP. RESULTS AND SIGNIFICANCE: During standing trials, static PBS standing scores negatively correlated with more AP displacement and velocity than ML displacement and velocity (p < 0.05). During sitting trials, dynamic PBS sitting scores negatively correlated with ML displacement and velocity (p < 0.05). CoP parameters in the ML direction of the sitting position and CoP parameters in the AP direction of the standing position may better reflect the balance control in children with spastic CP.


Assuntos
Paralisia Cerebral , Criança , Humanos , Equilíbrio Postural , Posição Ortostática , Tronco
4.
Comput Methods Biomech Biomed Engin ; 25(8): 833-839, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34806516

RESUMO

Various neurological and musculoskeletal disorders can induce pathologic toe walking and lead to changes in foot kinematics. In this study, we analyzed the differences in foot kinematics between toe walking and heel-toe walking (HW) in able-bodied individuals. Twenty young healthy adults performed three gaits: HW, comfortable-height toe walking (CTW), and maximum-height toe walking (MTW). Oxford Foot Model was used for gait analysis. Toe walking showed increase of forefoot plantarflexion and hindfoot internal rotation compared to HW. Thus, our results may help distinguish the pathologic mechanism of the equinus gait in various disorders from the kinematic change of toe walking itself.


Assuntos
, Marcha , Adulto , Fenômenos Biomecânicos , Calcanhar , Humanos , Dedos do Pé , Caminhada
5.
Sensors (Basel) ; 21(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809758

RESUMO

The untethered exoskeletal robot provides patients with the freest and realistic walking experience by assisting them based on their intended movement. However, few previous studies have reported the effect of robot-assisted gait training (RAGT) using wearable exoskeleton in children with cerebral palsy (CP). This pilot study evaluated the effect of overground RAGT using an untethered torque-assisted exoskeletal wearable robot for children with CP. Three children with bilateral spastic CP were recruited. The robot generates assistive torques according to gait phases automatically detected by force sensors: flexion torque during the swing phase and extension torque during the stance phase at hip and knee joints. The overground RAGT was conducted for 17~20 sessions (60 min per session) in each child. The evaluation was performed without wearing a robot before and after the training to measure (1) the motor functions using the gross motor function measure and the pediatric balance scale and (2) the gait performance using instrumented gait analysis, the 6-min walk test, and oxygen consumption measurement. All three participants showed improvement in gross motor function measure after training. Spatiotemporal parameters of gait analysis improved in participant P1 (9-year-old girl, GMFCS II) and participant P2 (13-year-old boy, GMFCS III). In addition, they walked faster and farther with lower oxygen consumption during the 6-min walk test after the training. Although participant P3 (16-year-old girl, GMFCS IV) needed the continuous help of a therapist for stepping at baseline, she was able to walk with the platform walker independently after the training. Overground RAGT using a torque-assisted exoskeletal wearable robot seems to be promising for improving gross motor function, walking speed, gait endurance, and gait efficiency in children with CP. In addition, it was safe and feasible even for children with severe motor impairment (GMFCS IV).


Assuntos
Paralisia Cerebral , Robótica , Paralisia Cerebral/diagnóstico , Criança , Pré-Escolar , Feminino , Marcha , Humanos , Lactente , Masculino , Projetos Piloto , Caminhada
6.
Dev Med Child Neurol ; 63(4): 480-487, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33326122

RESUMO

AIM: To investigate the efficacy of a virtual reality rehabilitation system of wearable multi-inertial sensors to improve upper-limb function in children with brain injury. METHOD: Eighty children (39 males, 41 females) with brain injury including cerebral palsy aged 3 to 16 years (mean age 5y 8mo, SD 2y 10mo) were assessed as part of a multicentre, single-blind, randomized controlled trial. The intervention group received a 30-minute virtual reality intervention and a 30-minute session of conventional occupational therapy while the control group received 60 minutes of conventional occupational therapy per session, with 20 sessions over 4 weeks. The virtual reality rehabilitation system consisted of games promoting wrist and forearm articular movements using wearable inertial sensors. The Melbourne Assessment of Unilateral Upper Limb Function-2 (MA-2), Upper Limb Physician's Rating Scale, Pediatric Evaluation of Disability Inventory Computer Adaptive Test, and computerized three-dimensional motion analysis were performed. RESULTS: Both groups (virtual reality, n=40; control, n=38) significantly improved after treatment compared to baseline; however, the virtual reality group showed more significant improvements in upper-limb dexterity functions (MA-2, virtual reality group: Δ=10.09±10.50; control: Δ=3.65±6.92), performance of activities of daily living, and forearm supination by kinematic analysis (p<0.05). In the virtual reality group, children with more severe motor impairment showed significant improvements compared to those with less severe impairment. INTERPRETATION: The virtual reality rehabilitation system used in this study, which consists of wearable inertial sensors and offers intensive, interactive, and repetitive motor training, is effective in children with brain injury. WHAT THIS PAPER ADDS: Both virtual reality rehabilitation and conventional occupational therapy were effective for upper-limb training. Virtual reality training was superior in improving dexterity, performance of activities of daily living, and active forearm supination motion. The effect of virtual reality training was significant in children with more severe motor impairments.


Assuntos
Lesões Encefálicas/reabilitação , Paralisia Cerebral/reabilitação , Reabilitação Neurológica/métodos , Realidade Virtual , Atividades Cotidianas , Adolescente , Lesões Encefálicas/fisiopatologia , Paralisia Cerebral/fisiopatologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Terapia Ocupacional , Método Simples-Cego , Resultado do Tratamento , Extremidade Superior/fisiopatologia
7.
Gait Posture ; 72: 222-227, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31260860

RESUMO

BACKGROUND: Prior studies have analyzed the activity of the gastrocnemius (GCM) medial and lateral heads as a single unit because it is technically challenging to separately analyze the function of each component in vivo. However, functional variation between the medial and lateral heads is expected due to their anatomical differences. RESEARCH QUESTION: What is the independent function of the medial GCM? How does paralysis of the GCM medial head affect gait kinematics?. METHODS: Twelve healthy adults (two males and ten females; age: 28.2 [±7.72] years) that were scheduled to undergo neurolysis of the tibial nerve branch supplying the medial head of the GCM for aesthetic calf reduction participated in the study. Gait analysis was performed using a computerized opto-electric gait analysis system to measure kinematic data. Surface electromyography (EMG) was recorded simultaneously during the gait analysis. Surface electrodes were placed on seven muscles. Pre-procedure and 1-week and 3-month post-procedure data were compared using a linear mixed model. RESULTS: During level walking, decreased activity of the GCM medial head did not significantly change gait kinematics. However, a significant increase in GCM lateral head and hamstring activities occurred after a branch nerve block to the GCM medial head. During stair ascent, in contrast to level walking, changes in EMG activity only occurred in the GCM medial head, and post-procedure ankle dorsiflexion angles at the end of the terminal-stance phase significantly increased. Ankle plantarflexion angles during the push-off phase were also decreased when compared with pre-procedure values. SIGNIFICANCE: The human body response to dysfunction of the GCM medial head depended on the type of locomotion.


Assuntos
Marcha , Músculo Esquelético/inervação , Paraplegia/fisiopatologia , Subida de Escada , Nervo Tibial , Caminhada , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA