Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Macromol Res ; 31(2): 133-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844252

RESUMO

Biomass-derived isosorbide (ISB) is a promising alternative to petroleum-based monomers in industrial plastics. In this study, ISB-based thermoplastic polyurethanes (ISB-TPUs) were prepared using ISB as a biomass chain extender, and the effects of the preparation route on the structural and physical properties of the resultant polymers were investigated. Prepolymer methods were more suitable for obtaining the desired molecular weights (MWs) and physical properties of ISB-TPUs than the one-shot method. The presence of the solvent and catalyst in the prepolymer step had significant effects on the structural and physical properties of the resultant polymer. Among several prepolymer conditions, the solvent- and catalyst-free methods were the most suitable for preparing commercial-level ISB-TPUs, with number- and weight-average MWs (M n and M w ) of 32,881 and 90,929 g mol-1, respectively, and a tensile modulus (E) and ultimate tensile strength (UTS) of 12.0 and 40.2 MPa, respectively. In comparison, the presence of a catalyst in the prepolymer step resulted in lower MWs and mechanical properties (81,033 g mol-1 and 18.3 MPa of M w and UTS, respectively). The co-existence of the catalyst/solvent led to a further decline in the properties of ISB-TPUs (26,506 and 10.0 MPa of M w and UTS, respectively). ISB-TPU prepared via the solvent- and catalyst-free methods exhibited remarkable elastic recovery when subjected to up to 1000% strain in mechanical cycling tests. Rheological characterization confirmed the thermo-reversible phase change (thermoplasticity) of the polymer. Supplementary Information: The online version contains supplementary material available at 10.1007/s13233-023-00125-w.

2.
Soft Matter ; 17(13): 3700-3708, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683277

RESUMO

A concentration gradient in an aqueous solution is a promising source of energy that can be converted into electrical energy by an ion-exchange polymer membrane. In concentration-gradient energy harvesters, ion transport through nanoporous channels is an emerging approach to enhance the energy conversion efficiency. Since massive but selective ion transport could be realized through nanochannels, the theoretical calculations predicted that nanoporous membranes can extract significantly larger energy than the conventional non-structured membranes. In this regard, scientists in the field have attempted to produce nanoporous membranes on a macroscopic scale based on 1D, 2D, and 3D materials. However, the fabrication of nanoporous membranes is often accompanied by technical difficulties, which entails high production cost, low throughput, and poor scalability. In this study, we took advantage of the self-segregating properties of block copolymers (BCPs) to address these issues. In particular, the non-solvent-induced phase separation method has been utilized to produce three-dimensionally interconnected nanopores within BCP membranes. In addition, the neutral BCP nanopores' surface was modified with positive charges to allow selective diffusion of anions in concentration-gradient cells. By mounting the porous BCP membranes between two aqueous solutions with different concentrations, we studied the BCP-membrane-mediated energy-harvesting performance.

3.
Soft Matter ; 16(45): 10252-10259, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33125027

RESUMO

Engineering plasmonic nanoparticles (NPs) into superstructures comprising two or more distinctive materials is highly desirable because these assemblies can unfold new properties that differ from those exhibited by their individual counterparts. In addition, metal NPs such as Au NPs and Ag NPs have played a major role in environmental remediation. In this study, we designed a heterogeneous NP assembly composed of an Au core and Ag satellite by utilizing a mussel-inspired polydopamine (PDA) strategy. This approach afforded substantial enhancement in the catalytic activity because of the synergistic effect between the Au core and Ag satellite. Specifically, the heat from the localized surface plasmon resonance excitation of the Au NPs can accelerate the reduction reaction of 4-nitrophenol, while the Ag NPs act as a catalyst for reducing the activation energy. Overall, we prepared a facile route to produce heterogeneous metal NP assemblies, which offers promise in scalable synthesis and application in heterogeneous catalysis.

4.
RSC Adv ; 10(36): 21309-21317, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35518755

RESUMO

Taking advantage of the triboelectrification effect and electrostatic induction, triboelectric nanogenerators (TENGs) provide a simple and efficient path to convert environmental mechanical energy into electric energy. Since the generation of surface charges and their density on triboelectric materials are the key factors in determining TENG performance, many efforts have been undertaken to engineer the structures and chemistry of triboelectric materials. Among others, dielectric control of triboelectric materials is an emerging approach because the dielectric constant is intimately correlated with the capacitance of materials. In this regard, we prepared porous polydimethylsiloxane (PDMS) composites decorated with Au nanoparticles (NPs), which was designed to engineer the compressibility and dielectric constant of PDMS elastomer. To this end, a polydopamine layer was synthesized on the PDMS surface to facilitate the homogeneous deposition of Au NPs. Unlike untreated PDMS sponges, Au NPs were efficiently coated onto polydopamine-treated PDMS sponges to increase the dielectric constant. When the resulting porous NP-PDMS composites were assembled into TENG devices, the electrical output of the TENGs initially improved but decreased with the amount of Au NPs. This trade-off relationship has been discussed in terms of charge generation on the air surface and pores of NP-PDMS composites based on a recent experimental model.

5.
Soft Matter ; 14(37): 7664-7670, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30175830

RESUMO

Ionogels are crosslinked polymer networks that swell in ionic liquids (ILs) and exhibit high conductivity and chemical stability. Combined with a representative thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAm), previously studied ionogels fulfilled the requirements for smart responsive materials, but their transition temperature in hydrophobic ILs exceeded that which could be used for practical applications. In this study, we prepared transition temperature tunable ionogels via copolymerization of NIPAm with solvatophilic N,N'-diethylacrylamide (NDEAm). The hydrophobic diethyl moiety in NDEAm promoted ionogel solvatophilicity toward the IL, resulting in a larger swelling ratio, lower volume phase transition temperature, and narrower transition range with increase in NDEAm content in the prepared ionogels. Based on these fundamental observations, ionogels that exhibit a volume phase transition near room temperature were prepared. We also studied the swelling and deswelling kinetics of the prepared ionogels, revealing that the deswelling rate is much slower than swelling due to the formation of a dense skin layer on the ionogel surface.

6.
RSC Adv ; 9(1): 224-233, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-35521603

RESUMO

For white light-emitting diode (LED) applications, semiconductor quantum dots (QDs) have been widely utilized as efficient down-converters to change the blue color of the light source into different emission colors. Because QDs offer spectral tunability over the entire visible light range, as well as improved color purity, they have rapidly replaced conventional phosphor-based white LEDs. However, for the sustainable growth of QD-mediated LEDs, the amount of QDs required must be reduced by enhancing the color-conversion efficiency. For this purpose, we prepared poly(lauryl methacrylate) (PLMA) composite films by the photo-crosslinking polymerization of lauryl methacrylate monomers in the presence of Au@Ag@SiO2 nanoparticles (NPs) and InP@ZnS QDs. In the PLMA composites, the Au@Ag NPs not only amplified the blue light source but also modified the relaxation of the excited QDs via localized surface plasmon resonance. This resulted in a maximum 12.9-fold enhancement in the QD fluorescence. Because the blue light source in this study can be easily replaced by blue LEDs, the enhanced efficiency of QD emissions via the plasmonic effect could potentially increase the performance of QDs for display applications.

7.
ACS Appl Mater Interfaces ; 9(29): 24753-24762, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28658571

RESUMO

A novel polyelectrolyte containing triazine (TAZ) and benzodithiophene (BDT) scaffolds with polar phosphine oxide (P═O) and quaternary ammonium ions as pendant groups, respectively, in the polymer backbone (PBTAZPOBr) was synthesized to use it as a cathode interfacial layer (CIL) for polymer solar cell (PSC) application. Owing to the high electron affinity of the TAZ unit and P═O group, PBTAZPOBr could behave as an effective electron transport material. Due to the polar quaternary ammonium and P═O groups, the interfacial dipole moment created by PBTAZPOBr substantially reduced the work function of the metal cathode to afford better energy alignment in the device, thus enabling electron extraction and reducing recombination of excitons at the photoactive layer/cathode interface. Consequently, the PSC devices based on the poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl]:[6,6]-phenyl-C71-butyric acid methyl ester (PTB7:PC71BM) system with PBTAZPOBr as CIL displayed simultaneously enhanced open-circuit voltage, short-circuit current density, and fill factor, whereas the power conversion efficiency increased from 5.42% to 8.04% compared to that of the pristine Al device. The outstanding performance of PBTAZPOBr is attributed not only to the polar pendant groups of BDT unit but also to the TAZ unit linked with the P═O group of PBTAZPOBr, demonstrating that functionalized TAZ building blocks are very promising cathode interfacial materials (CIMs). The design strategy proposed in this work will be helpful to develop more efficient CIMs for high performance PSCs in the future.

8.
Nanoscale ; 8(20): 10823-31, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27168228

RESUMO

Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence enhancement, which also has a direct relevance to the development of fluorescence sensors or detectors. The enhancement mechanism was found to be interconnected with the excitation process rather than the alternation of the decay kinetics. In particular, we demonstrate that randomly oriented, but regular grains of lamellae of polystyrene-block-polyisoprene, PS-b-PI, diblock copolymers and their blend with PS homopolymers can behave as Bragg mirrors to induce multiple reflections of the excitation source inside the photonic structures. This process in turn significantly increases the effective absorption of the given fluorophores inside the polymeric photonic structures to amplify the fluorescence signal.

9.
Langmuir ; 31(47): 12929-36, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26542455

RESUMO

We report a facile method to control directed self-assembly (DSA) of spherical micelles of block copolymers (BCPs) by topographically patterned surface. A cylinder-forming polystyrene-block-poly(2-vinylpyridine) copolymer [Mn,PS = 175 kg/mol, Mn,P2VP = 70 kg/mol, and polydipersity index (PDI) = 1.08] was phase-separated on a thin film of poly(vinyl alcohol) (PVA) by solvent annealing. By additional treatment with ethanol as a preferential solvent for P2VP block, the surface of BCP thin film was reconstructed to produce nanopores. Nanoporous structures in BCP thin films were transferred to the underlying hydrophilic PVA film by reactive ion etching (RIE). Then spherical BCP micelles were quickly self-assembled within the nanopores in the PVA layer due to topographical contrast and surface energy difference during spin-coating. Consequently, the site-selective array of BCP micelles was utilized as templates to achieve heterogeneous organization of nanoparticles and organic fluorescent dyes over a large area. In addition, it was observed that those heterogeneous assemblies showed a remarkable decrease in fluorescence intensity of organic dyes.

10.
ACS Appl Mater Interfaces ; 7(33): 18778-85, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26241213

RESUMO

Nanoscale assemblies composed of different types of nanoparticles (NPs) can reveal interesting aspects about material properties beyond the functions of individual constituent NPs. This research direction may also represent current challenges in nanoscience toward practical applications. With respect to the assembling method, synthetic or biological nanostructures can be utilized to organize heterogeneous NPs in specific sites via chemical or physical interactions. However, those assembling methods often encounter uncontrollable particle aggregation or phase separation. In this study, we anticipated that the self-segregating properties of block copolymer micelles could be particularly useful for organizing heterogeneous NPs, because the presence of chemically distinct domains such as the core and the corona can facilitate the selective placement of constituent NPs in separate domains. Here, we simultaneously functionalized the core and the corona of micelles by Au NPs and Ag NPs, which exhibited plasmonic and catalytic functions, respectively. Our primary question is whether these plasmonic and catalytic functions can be combined in the assembled structures to engineer the kinetics of a model chemical reaction. To test this hypothesis, the catalytic reduction of 4-nitrophenol was selected to evaluate the collective properties of the micellar assemblies in a chemical reaction.


Assuntos
Nanopartículas Metálicas/química , Micelas , Polímeros/química , Acrilatos/química , Catálise , Ouro/química , Nanopartículas Metálicas/ultraestrutura , Nitrofenóis/química , Poliestirenos/química , Prata/química , Espectrofotometria Ultravioleta , Raios Ultravioleta
11.
Soft Matter ; 11(22): 4402-7, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25959746

RESUMO

Hybrid assemblies consisting of metal nanoparticles (NPs) and fluorophores are quite interesting because the intrinsic properties of fluorophores can be engineered in the assembled structure. In this regard, we utilized the self-segregation properties of block copolymer micelles to organize metal NPs and fluorophores simultaneously in a specific arrangement. From the viewpoint of assembly methods, we first encapsulated Au NPs in the PS cores of polystyrene-block-poly(acrylic acid) (PS-PAA) micelles. Then, positively charged fluorescent dyes of rhodamine 123 (R123) were bound to the negatively charged PAA coronas by electrostatic interactions. Since carboxylic acid in the PAA block is a weak acid, the degree of R123 binding to PS-PAA micelles can be adjusted by varying the pH of the solution. Therefore, by changing the pH, we were able to control the assembly and disassembly of R123 molecules to PS-PAA micelles and the corresponding change in the fluorescence signal.

12.
ACS Appl Mater Interfaces ; 6(19): 16949-55, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25215639

RESUMO

Iron oxide nanoparticles dispersed within a thermally responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogel matrix effectively convert the photo energy of visible light of modest intensity into thermal energy, providing the efficient means to trigger changes in volumetric swelling of hydrogels. However, long irradiation time (on the order of minutes) and modest volume change limit their applications that need fast response and/or large volume change. In this work, we found that the degree of volume change triggered by light could be maximized by adjusting the lower critical solution temperature (LCST) of the hydrogels. On the basis of the evidence in this investigation, we can develop highly responsive hydrogels that show rapid and significant light-induced volume change, which could be achieved by incorporating a hydrophobic N,N-diethylacrylamide moiety in the PNIPAm network. This enhanced responsiveness led to the successful application of this material in a remote-controllable microvalve for microfluidic devices operated by light illumination within a few seconds.

13.
ACS Nano ; 6(6): 5051-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22621410

RESUMO

Recently, it has been noticed that surface plasmon resonance of metal nanoparticles can alter the intrinsic properties of nearby fluorophores. Field enhancement and radiative decay engineering are major principles for understanding a number of experimental observations such as enhanced and quenched emission of fluorophores in the vicinity of metal nanoparticles. At the same time, there are apparent similarities between surface-plasmon-coupled fluorescence and fluorescence resonance energy transfer (FRET), as both are near-field through-space interactions. From this perspective, we hypothesize that donor-acceptor interaction in the FRET can be altered by metal nanoparticles. Our approach is based on diblock copolymer micelles, which have been widely applied for nanoscale arrangement of functionalities. By applying self-assembling techniques of copolymer micelles to organize the spatial location of semiconductor quantum dots, fluorescent dyes, and metal nanoparticles, the FRET in hybrid assemblies can be switched off by plasmonic effects.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Nanopartículas/química , Polímeros/química , Pontos Quânticos , Ressonância de Plasmônio de Superfície/métodos , Micelas
14.
Langmuir ; 27(19): 12191-6, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21875133

RESUMO

We report the formation of ordered complex nanostructures from single-layered films of mixtures of polystyrene-poly(2-vinylpyridine) (PS-P2VP) and polystyrene-poly(4-vinylpyridine) (PS-P4VP) diblock copolymer micelles by THF (tetrahydrofuran) annealing. We first examined the influence of THF vapor on PS-P2VP and PS-P4VP micelles in their single-layered films. Due to the different solubility of PS-P2VP and PS-P4VP copolymers in THF, a hexagonal array of PS-P2VP micelles was changed into cylindrical nanodomains, but that of PS-P4VP micelles was not changed. The different influence of THF on PS-P2VP and PS-P4VP micelles was combined in single-layered films of mixtures of both micelles. For the purpose, we prepared mixture solutions of independently prepared small PS-P2VP and large PS-P4VP micelles. Then, bimodal self-assemblies of micelles were prepared from the mixtures, for which the hexagonal array of large PS-P4VP micelles was surrounded by small PS-P2VP micelles. When the bimodal self-assembly was annealed by THF vapor, PS-P2VP micelles were transformed into cylindrical nanodomains, but their reorganization was guided by hexagonally arranged PS-P4VP micelles. As a result, we were able to produce ordered complex nanostructures in the form of a hexagonal array of PS-P4VP micelles surrounded by PS-P2VP cylinders, which was further utilized for the synthesis of Au nanoparticles.


Assuntos
Furanos/química , Nanoestruturas/química , Poliestirenos/química , Polivinil/química , Piridinas/química , Membranas Artificiais , Micelas , Tamanho da Partícula , Solubilidade , Solventes/química , Propriedades de Superfície
16.
J Nanosci Nanotechnol ; 10(10): 6819-24, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137804

RESUMO

We controlled the fluorescence resonance energy transfer (FRET) between ZnO nanoparticles and rhodamine B (RB) within multilayered thin films prepared by the layer-by-layer (LbL) assembling method. Positively charged ZnO nanoparticles and RB-labeled poly(allyamine hydrochloride) (RB-PAH) were accurately incorporated into LbL assemblies of polyelectrolytes. The distance between ZnO nanoparticles and RB-PAH was adjusted by varying the number of layers of pure polyelectrolytes, leading to the controlled FRET from ZnO nanoparticles to RB-PAH.

17.
J Nanosci Nanotechnol ; 10(10): 6896-900, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137820

RESUMO

We report controlled light emissions from spin-assisted layer-by-layer (LbL) thin films containing a donor-acceptor pair of fluorescent dyes. Based on their spectral overlap, we selected rhodamine 123 (R123) and rhodamine B (RB) as the donor and acceptor, respectively. For the construction of multilayered thin films, a complex of each dye and poly(sodium 4-sulfonate) (PSS-R123 and PSS-RB) was prepared and then alternately spin coated with poly(allyamine hydrochloride) (PAH). LbL assemblies were fabricated with a sequence of [PAH/PSS-RB]/([PAH/PSS])n/[PAH/PSS-R123]. Since the distance between R123 and RB was precisely adjusted by the number of bilayers (n) of [PAH/PSS] between them, we were able to tune the light emission from the thin film by controlling the efficiency of the energy transfer.

18.
Macromol Rapid Commun ; 31(7): 645-50, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21590955

RESUMO

We demonstrate the formation of highly ordered hexagonal arrays of hybridized polystyrene-poly(4-vinyl pyridine), PS-PVP, micelles with controllable size by solvent annealing techniques. Because the formation of hybridized micelles was prohibited in the mixture solutions of two different-sized PS-PVP micelles, single-layered films with bimodal self-assemblies of small and large micelles were fabricated from the mixture solutions by adjusting their mixing ratios. When the single-layered films were solvent annealed by saturated vapor of tetrahydrofuran (THF), on the other hand, small and large PS-PVP micelles in the bimodal self-assemblies merged together to form hybridized micelles. In addition, the hybridized micelles arranged themselves in a highly ordered hexagonal array, the diameter and center-to-center distance of which were precisely adjusted by varying the mixing ratio of small to large micelles in the bimodal assemblies.

19.
Chem Commun (Camb) ; (24): 2850-1, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15599438

RESUMO

A hexagonal array of optically active ZnO nanoparticles was synthesized in situ on the solid substrate by utilizing a single-layered film of diblock copolymer micelles as a nanostructured template.

20.
Langmuir ; 20(24): 10734-6, 2004 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-15544409

RESUMO

A single-layered array of polystyrene-block-poly(4-vinylpyridine), PS-PVP, micelles in hexagonal order, fabricated by spin coating, was employed as a nanostructured template for synthesis of polypyrrole, a conducting polymer, in nanometer-sized domains. Oxidative catalysts of FeCl3 for the polymerization were selectively loaded in spherical PVP nanodamains so that they were hexagonally arranged over the film but confined in the nanometer range. The vapor-phase polymerization of pyrrole was localized in the PVP nanodomains, leading to a morphological transition from spherical to wormlike domains. In addition, the nanodomains containing polypyrrole were converted to open cavities by ethanol, a PVP block-selective solvent.


Assuntos
Membranas Artificiais , Micelas , Nanoestruturas/química , Polímeros/síntese química , Poliestirenos/química , Polivinil/química , Pirróis/síntese química , Tamanho da Partícula , Polímeros/química , Pirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA