Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39056929

RESUMO

Exergy analysis evaluates the efficiency of system components by quantifying the rate of entropy generation. In general, the exergy destruction rate or irreversibility rate was directly obtained through the exergy balance equation. However, this method cannot determine the origin of the component's entropy generation rate, which is a very important factor in system design and improvement. In this study, a thorough energy, exergy, and thermoeconomic analysis of a proton-exchange membrane fuel cell (PEMFC) was performed, providing the heat transfer rate, entropy generation rate, and cost loss rate of each component. The irreversibility rate of each component was obtained by the Gouy-Stodola theorem. Detailed and extensive exergy and thermoeconomic analyses of the PEMFC system determined that water cooling units experience the greatest heat transfer among the components in the studied PEMFC system, resulting in the greatest irreversibility and, thus, the greatest monetary flow loss.

2.
Entropy (Basel) ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248161

RESUMO

The maximum temperature limit at which liquid boils explosively is referred to as the superheat limit of liquid. Through various experimental studies on the superheating limit of liquids, rapid evaporation of liquids has been observed at the superheating limit. This study explored the water nucleation process at the superheat limit achieved in micro-platinum wires using a molecular interaction model. According to the molecular interaction model, the nucleation rate and time delay at 576.2 K are approximately 2.1 × 1011/(µm3µs) and 5.7 ns, respectively. With an evaporation rate (116.0 m/s) much faster than that of hydrocarbons (14.0 m/s), these readings show that explosive boiling or rapid phase transition from liquid to vapor can occur at the superheat limit of water. Subsequent bubble growth after bubble nucleation was also considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA