Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514760

RESUMO

Various stimulation systems to modulate sleep structure and function have been introduced. However, studies on the time spent in sleep initiation (TSSI) are limited. This study proposes a closed-loop auditory stimulation (CLAS) to gradually modulate respiratory rhythm linked to the autonomic nervous system (ANS) activity directly associated with sleep. CLAS is continuously updated to reflect the individual's current respiratory frequency and pattern. Six participants took naps on different days with and without CLAS. The average values of the TSSI are 14.00 ± 4.24 and 9.67 ± 5.31 min in the control and stimulation experiments (p < 0.03), respectively. Further, the values of respiratory instability and heart rate variability differ significantly between the control and stimulation experiments. Based on our findings, CLAS supports the individuals to gradually modulate their respiratory rhythms to have similar characteristics observed near sleep initiation, and the changed respiratory rhythms influence ANS activities, possibly influencing sleep initiation. Our approach aims to modulate the respiratory rhythm, which can be controlled intentionally. Therefore, this method can probably be used for sleep initiation and daytime applications.


Assuntos
Taxa Respiratória , Sono , Humanos , Estimulação Acústica , Sono/fisiologia , Frequência Cardíaca/fisiologia
2.
Biomed Eng Lett ; 13(3): 329-341, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37519871

RESUMO

Among the various sleep modulation methods for improving sleep, three methods using noninvasive stimulation during sleep have been reviewed and summarized. The first method involves noninvasive direct brain stimulation to induce a current directly in the brain cortex. Electrically or magnetically applied stimulations trigger electrical events such as slow oscillations or sleep spindles, which can also be recorded by an electroencephalogram. The second method involves sensory stimulation during sleep, which provides stimulation through the sensory pathway to invoke equivalent brain activity like direct brain stimulation. Olfactory, vestibular, and auditory stimulation methods have been used, resulting in several sleep-modulating effects, which are characteristic and depend on the experimental paradigm. The third method is to modulate sleep by shifting the autonomic balance affecting sleep homeostasis. To strengthen parasympathetic dominance, stimulation was applied to decrease heart rate by synchronizing the heart rhythm. These noninvasive stimulation methods can strengthen slow-wave sleep, consolidate declarative or procedural memory, and modify sleep macrostructure. These stimulation methods provide evidence and possibility for sleep modulation in our daily life as an alternative method for the treatment of disturbed sleep and enhancing sleep quality and performance beyond the average level.

3.
Biomed Eng Lett ; 13(3): 313-327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37519880

RESUMO

Sleep is an essential part of our lives and daily sleep monitoring is crucial for maintaining good health and well-being. Traditionally, the gold standard method for sleep monitoring is polysomnography using various sensors attached to the body; however, it is limited with regards to long-term sleep monitoring in a home environment. Recent advancements in wearable and nearable technology have made it possible to monitor sleep at home. In this review paper, the technologies that are currently available for sleep stages and sleep disorder monitoring at home are reviewed using wearable and nearable devices. Wearables are devices that are worn on the body, while nearables are placed near the body. These devices can accurately monitor sleep stages and sleep disorder in a home environment. In this study, the benefits and limitations of each technology are discussed, along with their potential to improve sleep quality.

4.
Sensors (Basel) ; 23(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36991833

RESUMO

Vital signs provide important biometric information for managing health and disease, and it is important to monitor them for a long time in a daily home environment. To this end, we developed and evaluated a deep learning framework that estimates the respiration rate (RR) and heart rate (HR) in real time from long-term data measured during sleep using a contactless impulse radio ultrawide-band (IR-UWB) radar. The clutter is removed from the measured radar signal, and the position of the subject is detected using the standard deviation of each radar signal channel. The 1D signal of the selected UWB channel index and the 2D signal applied with the continuous wavelet transform are entered as inputs into the convolutional neural-network-based model that then estimates RR and HR. From 30 recordings measured during night-time sleep, 10 were used for training, 5 for validation, and 15 for testing. The average mean absolute errors for RR and HR were 2.67 and 4.78, respectively. The performance of the proposed model was confirmed for long-term data, including static and dynamic conditions, and it is expected to be used for health management through vital-sign monitoring in the home environment.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Sinais Vitais , Frequência Cardíaca , Redes Neurais de Computação , Sono , Monitorização Fisiológica , Algoritmos
5.
Physiol Meas ; 43(12)2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575156

RESUMO

Objective.Cooperation in the cardiorespiratory system helps maintain internal stability. Various types of system interactions have been investigated; however, the characteristics of the interactions have mostly been studied using data collected in well-defined physiological states, such as sleep. Furthermore, most analyses provided general information about the interaction, making it difficult to quantify how the systems influenced one another.Approach.Cardiorespiratory directional coupling was investigated in different age groups (20 young and 19 elderly subjects) in a wake-resting state. The directionality index (DI) was calculated using instantaneous phases from the heartbeat interval and respiratory signal to provide information about the strength and direction of interaction between the systems. Statistical analysis was performed between the groups on the DI and independent measures of directionality (ncr: influence from cardiac system to respiratory system, and ncc: influence from the respiratory system to the cardiac system).Main results.The values of DI were -0.52 and -0.17 in the young and elderly groups, respectively (p< 0.001). Furthermore, the values of ncrand nccwere found to be significantly different between the groups (p< 0.001), respectively.Significance.Changes in both directions between the systems influence different aspects of cardiorespiratory coupling between the groups. This observation could be linked to different levels of autonomic modulation associated with ageing. Our approach could aid in quantitatively tracking and comprehending how systems interact in response to physiological and environmental changes. It could also be used to understand how abnormal interaction characteristics influence physiological system dysfunctions and disorders.


Assuntos
Taxa Respiratória , Sono , Humanos , Idoso , Frequência Cardíaca/fisiologia , Envelhecimento , Sistema Nervoso Autônomo
6.
IEEE J Biomed Health Inform ; 26(11): 5428-5438, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36048977

RESUMO

This paper proposes a robust method to screen patients with sleep apnea syndrome (SAS) using a single-lead electrocardiogram (ECG). This method consists of minute-by-minute abnormal breathing detection and apnea-hypopnea index (AHI) estimation. Heartbeat interval and ECG-derived respiration (EDR) are calculated using the single-lead ECG and used to train the models, including ResNet18, ResNet34, and ResNet50. The proposed method, using data from 1232 subjects, was developed with two open datasets and experimental data and evaluated using two additional open datasets and data acquired from an abdomen-attached wearable device (in total, data from 189 subjects). ResNet18 showed the best results, having an average Cohen's kappa coefficient of 0.57, in the abnormal breathing detection. Moreover, SAS patient classification, with 15 as the AHI threshold, yielded an average Cohen's kappa coefficient of 0.71. The results of patient classification were biased toward data from the wearable patch-type device, which may be influenced by different ECG waveforms. The proposed method is tuned with a sample of the data from the device, and the performance result of Cohen's kappa increased from 0.54 to 0.91 for SAS patient classification. Our method, proposed in this paper, achieved equivalent performance results with data recorded using an abdomen-attached wearable device and two open datasets used in previous studies, although the method had not used those data during model training. The proposed method could reduce the development costs of commercial software, as it was developed using open datasets, has robust performance throughout all datasets.


Assuntos
Síndromes da Apneia do Sono , Dispositivos Eletrônicos Vestíveis , Humanos , Síndromes da Apneia do Sono/diagnóstico , Eletrocardiografia/métodos , Frequência Cardíaca , Respiração
7.
Sensors (Basel) ; 22(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35162009

RESUMO

The increased demand for well-being has fueled interest in sleep. Research in technology for monitoring sleep ranges from sleep efficiency and sleep stage analysis to sleep disorder detection, centering on wearable devices such as fitness bands, and some techniques have been commercialized and are available to consumers. Recently, as interest in digital therapeutics has increased, the field of sleep engineering demands a technology that helps people obtain quality sleep that goes beyond the level of monitoring. In particular, interest in sleep aids for people with or without insomnia but who cannot fall asleep easily at night is increasing. In this review, we discuss experiments that have tested the sleep-inducing effects of various auditory stimuli currently used for sleep-inducing purposes. The auditory stimulations were divided into (1) colored noises such as white noise and pink noise, (2) autonomous sensory meridian response sounds such as natural sounds such as rain and firewood burning, sounds of whispers, or rubbing various objects with a brush, and (3) classical music or a preferred type of music. For now, the current clinical method of receiving drugs or cognitive behavioral therapy to induce sleep is expected to dominate. However, it is anticipated that devices or applications with proven ability to induce sleep clinically will begin to appear outside the hospital environment in everyday life.


Assuntos
Música , Som , Estimulação Acústica , Humanos , Ruído , Sono
8.
IEEE J Biomed Health Inform ; 26(2): 550-560, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34288880

RESUMO

This paper presents an automatic algorithm for the detection of respiratory events in patients using electrocardiogram (ECG) and respiratory signals. The proposed method was developed using data of polysomnogram (PSG) and those recorded from a patch-type device. In total, data of 1,285 subjects were used for algorithm development and evaluation. The proposed method involved respiratory event detection and apnea-hypopnea index (AHI) estimation. Handcrafted features from the ECG and respiratory signals were applied to machine learning algorithms including linear discriminant analysis, quadratic discriminant analysis, random forest, multi-layer perceptron, and the support vector machine (SVM). High performance was demonstrated when using SVM, where the overall accuracy achieved was 83% and the Cohen's kappa was 0.53 for the minute-by-minute respiratory event detection. The correlation coefficient between the reference AHI obtained using the PSG and estimated AHI as per the proposed method was 0.87. Furthermore, patient classification based on an AHI cutoff of 15 showed an accuracy of 87% and a Cohen's kappa of 0.72. The proposed method increases performance result, as it records the ECG and respiratory signals simultaneously. Overall, it can be used to lower the development cost of commercial software owing to the use of open datasets.


Assuntos
Síndromes da Apneia do Sono , Dispositivos Eletrônicos Vestíveis , Algoritmos , Eletrocardiografia , Humanos , Polissonografia/métodos , Sono , Síndromes da Apneia do Sono/diagnóstico
9.
Comput Biol Med ; 136: 104762, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399195

RESUMO

BACKGROUND: Narcolepsy is marked by pathologic symptoms including excessive daytime drowsiness and lethargy, even with sufficient nocturnal sleep. There are two types of narcolepsy: type 1 (with cataplexy) and type 2 (without cataplexy). Unlike type 1, for which hypocretin is a biomarker, type 2 narcolepsy has no adequate biomarker to identify the causality of narcoleptic phenomenon. Therefore, we aimed to establish new biomarkers for narcolepsy using the body's systemic networks. METHOD: Thirty participants (15 with type 2 narcolepsy, 15 healthy controls) were included. We used the time delay stability (TDS) method to examine temporal information and determine relationships among multiple signals. We quantified and analyzed the network connectivity of nine biosignals (brainwaves, cardiac and respiratory information, muscle and eye movements) during nocturnal sleep. In particular, we focused on the differences in network connectivity between groups according to sleep stages and investigated whether the differences could be potential biomarkers to classify both groups by using a support vector machine. RESULT: In rapid eye movement sleep, the narcolepsy group displayed more connections than the control group (narcolepsy connections: 24.47 ± 2.87, control connections: 21.34 ± 3.49; p = 0.022). The differences were observed in movement and cardiac activity. The performance of the classifier based on connectivity differences was a 0.93 for sensitivity, specificity and accuracy, respectively. CONCLUSION: Network connectivity with the TDS method may be used as a biomarker to identify differences in the systemic networks of patients with narcolepsy type 2 and healthy controls.


Assuntos
Cataplexia , Narcolepsia , Humanos , Sono , Fases do Sono , Sono REM
10.
IEEE J Biomed Health Inform ; 25(10): 3844-3853, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33848253

RESUMO

Manual scoring of sleep stages from polysomnography (PSG) records is essential to understand the sleep quality and architecture. Since the PSG requires specialized personnel, a lab environment, and uncomfortable sensors, non-contact sleep staging methods based on machine learning techniques have been investigated over the past years. In this study, we propose an attention-based bidirectional long short-term memory (Attention Bi-LSTM) model for automatic sleep stage scoring using an impulse-radio ultra-wideband (IR-UWB) radar which can remotely detect vital signs. Sixty-five young (30.0 ± 8.6 yrs.) and healthy volunteers underwent nocturnal PSG and IR-UWB radar measurement simultaneously; From 51 recordings, 26 were used for training, 8 for validation, and 17 for testing. Sixteen features including movement-, respiration-, and heart rate variability-related indices were extracted from the raw IR-UWB signals in each 30-s epoch. Sleep stage classification performances of Attention Bi-LSTM model with optimized hyperparameters were evaluated and compared with those of conventional LSTM networks for same test dataset. In the results, we achieved an accuracy of 82.6 ± 6.7% and a Cohen's kappa coefficient of 0.73 ± 0.11 in the classification of wake stage, REM sleep, light (N1+N2) sleep, and deep (N3) sleep which is significantly higher than the conventional LSTM networks (p < 0.01). Moreover, the classification performances were higher than those reported in comparative studies, demonstrating the effectiveness of the attention mechanism coupled with bi-LSTM networks for the sleep staging using cardiorespiratory signals.


Assuntos
Radar , Fases do Sono , Humanos , Aprendizado de Máquina , Polissonografia , Sono
11.
Biodivers Data J ; 9: e61866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33654452

RESUMO

BACKGROUND: Environmental crisis challenges the human race harder than ever before. Ecologists have produced a massive amount of data to cope with the crisis. Accordingly, many national scale ecological database systems have been developed worldwide to manage and analyse these datasets. However, in Korea, ecological datasets produced by different research institutes for different purposes have not been integrated or serviced due to poorly designed information infrastructure. To address this obstacle, we present EcoBank (www.nie-ecobank.kr), an open, web-based ecological database platform designed to play an important role in ecosystem analysis, not only in Korea, but also worldwide. NEW INFORMATION: The architecture of EcoBank comprises core technologies of WebGIS, Application Programming Interface (API), responsive web and open-source software (OSS). Comprehensive ecological datasets from three different sources, including the National Institute of Ecology (NIE) in Korea, related national and international platforms and repositories, enter the three conceptual modules in EcoBank: data management, analysis and service. Diverse potential stakeholders of EcoBank can be classified into three groups: researchers, policy-makers and public users. EcoBank aims to expand its horizons through mutual communication amongst these stakeholders. We opened and launched the EcoBank service in December 2019 and have now begun to broaden its network by linking it to other data platforms and repositories over the globe to find possible solutions to ecological issues in Korea.

12.
Neurobiol Aging ; 101: 141-149, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33618266

RESUMO

This study aimed to identify differences between physiological age-related and Alzheimer's disease (AD)-related alterations in sleep and rest-activity rhythm. All participants (n = 280; 20-90 years) underwent clinical assessments, [11C] Pittsburgh compound B-positron emission tomography, and actigraphic monitoring. In cognitively normal adults without cerebral amyloid-ß, older age was associated with earlier timing of circadian phase and robust rest-activity rhythm, but sleep quantity and quality were mostly unaffected by age. While preclinical AD was associated with earlier circadian timing, clinical AD exhibited later timing of daily rhythm and increased sleep duration. In conclusion, our findings suggest that older age itself leads to a more regular daily activity rhythm, but does not affect sleep duration. While preclinical AD made the effects of age-related phase advance more prominent, clinical AD was related to later circadian timing and increased sleep duration.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Ritmo Circadiano/fisiologia , Longevidade/fisiologia , Descanso/fisiologia , Sono/fisiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Sleep ; 44(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33367712

RESUMO

Sleep is a unique behavioral state that affects body functions and memory. Although previous studies suggested stimulation methods to enhance sleep, a new method is required that is practical for long-term and unconstrained use by people. In this study, we used a novel closed-loop vibration stimulation method that delivers a stimulus in interaction with the intrinsic heart rhythm and examined the effects of stimulation on sleep and memory. Twelve volunteers participated in the experiment and each underwent one adaptation night and two experimental conditions-a stimulation condition (STIM) and a no-stimulation condition (SHAM). The heart rate variability analysis showed a significant increase in the normalized high frequency and the normalized low frequency significantly decreased under the STIM during the slow-wave sleep (SWS) stage. Furthermore, the synchronization ratio between the heartbeat and the stimulus significantly increased under the STIM in the SWS stage. From the electroencephalogram (EEG) spectral analysis, EEG relative powers of slow-wave activity and theta frequency bands showed a significant increase during the STIM in the SWS stage. Additionally, memory retention significantly increased under the STIM compared to the SHAM. These findings suggest that the closed-loop stimulation improves the SWS-stage depth and memory retention, and further provides a new technique for sleep enhancement.


Assuntos
Consolidação da Memória , Sono de Ondas Lentas , Eletroencefalografia , Humanos , Sono , Vibração
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5335-5338, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019188

RESUMO

Nocturnal pulse oximetry has been proposed as a tool for diagnosing sleep apnea. We established criteria in determining previous occurrences of apnea events by extracting quantitative characteristics caused by apnea events over the duration of changes in blood oxygen saturation values in our previous studies. In addition, the apnea-hypopnea index was estimated by regression modeling. In this paper, the algorithm presented in the previous study was applied to the data collected from the sleep medicine center of other hospitals to verify its performance. As a result of applying the algorithm to pulse oximetry data of 15 polysomnographic recordings, the minute-by-minute apneic segment detection exhibited an average accuracy of 87.58% and an average Cohen's kappa coefficient of 0.6327. In addition, the correlation coefficient between the estimated apnea-hypopnea index and the reference was 0.95, and the average absolute error was 5.02 events/h. When the algorithm is evaluated on the data collected by the other sleep medicine center, they still detected semi real-time sleep apnea events and showed meaningful results in estimating apnea-hypopnea index, although their performance was somewhat lower than before. With the recent popularity of devices for mobile healthcare, such as the wearable pulse oximeter, the results of this study are expected to improve the user value of devices by implementing mobile sleep apnea diagnosis and monitoring functions.


Assuntos
Síndromes da Apneia do Sono , Algoritmos , Humanos , Oximetria , Oxigênio , Polissonografia , Síndromes da Apneia do Sono/diagnóstico
15.
IEEE J Biomed Health Inform ; 24(12): 3606-3615, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32149661

RESUMO

Sleep stage scoring is the first step towards quantitative analysis of sleep using polysomnography (PSG) recordings. However, although PSG is a gold standard method for assessing sleep, it is obtrusive and difficult to apply for long-term sleep monitoring. Further, because human experts manually classify sleep stages, it is time-consuming and exhibits inter-rater variability. Therefore, this article proposes a long short-term memory (LSTM) model for automatic sleep stage scoring using a polyvinylidene fluoride (PVDF) film sensor that can provide unconstrained long-term physiological monitoring. Signals were recorded using a PVDF sensor during PSG. From 60 recordings, 30 were used for training, 10 for validation, and 20 for testing. Sixteen parameters, including movement, respiration-related, and heart rate variability, were extracted from the recorded signals and then normalized. From the selected LSTM architecture, four sleep stage classification performances were evaluated for a test dataset and the results were compared with those of conventional machine learning methods. According to epoch-by-epoch (30 s) analysis, the classification performance for the four sleep stages had an average accuracy of 73.9% and a Cohen's kappa coefficient of 0.55. When compared with other machine learning methods, the proposed method achieved the highest classification performance. The use of LSTM networks with the PVDF film sensor has potential for facilitating automatic sleep scoring, and it can be applied for long-term sleep monitoring at home.


Assuntos
Redes Neurais de Computação , Polissonografia/métodos , Polivinil/química , Processamento de Sinais Assistido por Computador , Fases do Sono/fisiologia , Adolescente , Adulto , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Polissonografia/instrumentação , Estudos Retrospectivos , Adulto Jovem
16.
Sensors (Basel) ; 19(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554268

RESUMO

Sleep plays a primary function for health and sustains physical and cognitive performance. Although various stimulation systems for enhancing sleep have been developed, they are difficult to use on a long-term basis. This paper proposes a novel stimulation system and confirms its feasibility for sleep. Specifically, in this study, a closed-loop vibration stimulation system that detects the heart rate (HR) and applies -n% stimulus beats per minute (BPM) computed on the basis of the previous 5 min of HR data was developed. Ten subjects participated in the evaluation experiment, in which they took a nap for approximately 90 min. The experiment comprised one baseline and three stimulation conditions. HR variability analysis showed that the normalized low frequency (LF) and LF/high frequency (HF) parameters significantly decreased compared to the baseline condition, while the normalized HF parameter significantly increased under the -3% stimulation condition. In addition, the HR density around the stimulus BPM significantly increased under the -3% stimulation condition. The results confirm that the proposed stimulation system could influence heart rhythm and stabilize the autonomic nervous system. This study thus provides a new stimulation approach to enhance the quality of sleep and has the potential for enhancing health levels through sleep manipulation.


Assuntos
Frequência Cardíaca/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Humanos , Masculino , Sono/fisiologia , Vibração
18.
Front Physiol ; 10: 190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914965

RESUMO

Human physiological systems have a major role in maintenance of internal stability. Previous studies have found that these systems are regulated by various types of interactions associated with physiological homeostasis. However, whether there is any interaction between these systems in different individuals is not well-understood. The aim of this research was to determine whether or not there is any interaction between the physiological systems of independent individuals in an environment where they are connected with one another. We investigated the heart rhythms of co-sleeping individuals and found evidence that in co-sleepers, not only do independent heart rhythms appear in the same relative phase for prolonged periods, but also that their occurrence has a bidirectional causal relationship. Under controlled experimental conditions, this finding may be attributed to weak cardiac vibration delivered from one individual to the other via a mechanical bed connection. Our experimental approach could help in understanding how sharing behaviors or social relationships between individuals are associated with interactions of physiological systems.

19.
Psychiatry Res ; 271: 291-298, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513461

RESUMO

We investigated the relationship between autonomic nervous system activity during each sleep stage and the severity of depressive symptoms in patients with major depressive disorder (MDD) and healthy control subjects. Thirty patients with MDD and thirty healthy control subjects matched for sex, age, and body mass index completed standard overnight polysomnography. Depression severity was assessed using the Beck Depression Inventory (BDI). Time- and frequency-domain, and fractal HRV parameters were derived from 5-min electrocardiogram segments during light sleep, deep sleep, rapid eye movement (REM) sleep, and the pre- and post-sleep wake periods. Detrended fluctuation analysis (DFA) alpha-1 values during REM sleep were significantly higher in patients with MDD than in control subjects, and a significant correlation existed between DFA alpha-1 and BDI score in all subjects. DFA alpha-1 was the strongest predictor for the BDI score, along with REM density as a covariate. This study found that compared with controls, patients with MDD show reduced complexity in heart rate during REM sleep, which may represent lower cardiovascular adaptability in these patients, and could lead to cardiac disease. Moreover, DFA alpha-1 values measured during REM sleep may be useful as an indicator for the diagnosis and monitoring of depression.


Assuntos
Transtorno Depressivo Maior/fisiopatologia , Frequência Cardíaca/fisiologia , Sono REM/fisiologia , Adulto , Idoso , Sistema Nervoso Autônomo/fisiopatologia , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Sono/fisiologia
20.
IEEE Trans Biomed Eng ; 65(12): 2847-2854, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29993405

RESUMO

OBJECTIVE: Cardiorespiratory interactions have been widely investigated in different physiological states and conditions. Various types of coupling characteristics have been observed in the cardiorespiratory system; however, it is difficult to identify and quantify details of their interaction. In this study, we investigate directional coupling of the cardiorespiratory system in different physiological states (sleep stages) and conditions, i.e., severity of obstructive sleep apnea (OSA). METHODS: Directionality analysis is performed using the evolution map approach with heartbeats acquired from electrocardiogram and abdominal respiratory effort measured from the polysomnographic data of 39 healthy individuals and 24 mild, 21 moderate, and 23 severe patients with OSA. The mean phase coherence is used to confirm the weak and strong coupling of cardiorespiratory system. RESULTS: We find that unidirectional coupling from the respiratory to the cardiac system increases during wakefulness (average value of -0.61) and rapid eye movement sleep (-0.55). Furthermore, unidirectional coupling between the two systems significantly decreases during light (-0.52) and deep sleep, which is further decreased in deep sleep (-0.46), approaching bidirectional coupling. In addition, unidirectional coupling from the respiratory to the cardiac system also significantly increases according to the severity of OSA. CONCLUSION: These coupling characteristics in different states and conditions are believed to be linked with autonomic nervous modulation. SIGNIFICANCE: Our approach could provide an opportunity to understand how integrated systems cooperate for physiological functions under internal and external environmental changes, and how abnormality in one physiological system could develop to increase the risk of other systemic dysfunctions and/or disorders.


Assuntos
Frequência Cardíaca/fisiologia , Respiração , Apneia Obstrutiva do Sono/fisiopatologia , Fases do Sono/fisiologia , Adulto , Eletrocardiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Polissonografia , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA