Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Phys Chem B ; 128(10): 2360-2370, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442069

RESUMO

MA'AT analysis (J. Chem. Inf. Model. 2022, 62, 3135-3141) has been applied to model exocyclic hydroxymethyl group conformation in methyl ß-D-glucopyranoside (ßGlcOMe), methyl ß-D-galactopyranoside (ßGalOMe), and methyl ß-D-mannopyranoside (ßManOMe) in an unbiased manner. Using up to eight NMR J-couplings sensitive to rotation about the C5-C6 bond (torsion angle ω), two-state models of ω were obtained that are qualitatively consistent with the relative populations of the gg, gt, and tg rotamers reported previously. MA'AT analysis gave consistent unbiased gt ⇌ tg models of ω in ßGalOMe, with gt more populated than tg and mean values of ω for each population similar to those obtained from aqueous 1-µs MD simulation. Using different combinations of J-couplings had little effect on the ßGalOMe model in terms of the mean values of ω and circular standard deviations (CSDs). In contrast, MA'AT analysis of ω in ßGlcOMe and ßManOMe produced more than one two-state model independent of the ensemble of J-values used in the analyses. These models were characterized by gg ⇌ gt conformer exchange as expected, but the mean values of ω in both conformers varied significantly in the different fits, especially for the gg rotamer. Constrained (biased) MA'AT analyses in which only staggered geometries about ω were allowed gave RMSDs slightly larger than those obtained from the unbiased fits, precluding an assignment of an unbiased model. It is unclear why MA'AT analysis gives consistent and predictable unbiased models of ω in ßGalOMe but not in ßGlcOMe and ßManOMe. One possibility is that the distribution of ω in one or both of the gg and gt conformers in the latter does not conform to a von Mises function (i.e., is not Gaussian-like), but rather to a broad and/or flat distribution that cannot be fit by the current version of MA'AT. Nevertheless, the results of this study provide new evidence of the ability of MA'AT analysis to treat multi-state conformational exchange using only experimental NMR data, extending recent MA'AT applications to furanosyl ring pseudorotation (Biochemistry 2022, 61, 239-251).

2.
Magn Reson Chem ; 62(7): 544-555, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38414300

RESUMO

MA'AT analysis has been applied to two biologically-important O-glycosidic linkages in two disaccharides, α-D-Galp-(1→3)-ß-D-GalpOMe (3) and ß-D-Galp-(1→3)-ß-D-GalpOMe (4). Using density functional theory (DFT) to obtain parameterized equations relating a group of trans-O-glycosidic NMR spin-couplings to either phi (ϕ') or psi (ψ'), and experimental 3JCOCH, 2JCOC, and 3JCOCC spin-couplings measured in aqueous solution in 13C-labeled isotopomers, probability distributions of ϕ' and ψ' in each linkage were determined and compared to those determined by aqueous 1-µs molecular dynamics (MD) simulation. Good agreement was found between the MA'AT and single-state MD conformational models of these linkages for the most part, with modest (approximately <15°) differences in the mean values of ϕ' and ψ', although the envelope of allowed angles (encoded in circular standard deviations or CSDs) is consistently larger for ϕ' determined from MA'AT analysis than from MD for both linkages. The MA'AT model of the α-Galp-(1→3)-ß-Galp linkage agrees well with those determined previously using conventional NMR methods (3JCOCH values and/or 1H-1H NOEs), but some discrepancy was observed for the ß-Galp-(1→3)-ß-Galp linkage, which may arise from errors in the conventions used to describe the linkage torsion angles. Statistical analyses of X-ray crystal structures show ranges of ϕ' and ψ' for both linkages that include the mean angles determined from MA'AT analyses, although both angles adopt a wide range of values in the crystalline state, with ϕ' in ß-Galp-(1→3)-ß-Galp linkages showing greater-than-expected conformational variability.

3.
Phys Chem Chem Phys ; 25(23): 16048-16059, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272776

RESUMO

Methyl aldohexopyranosides were 13C-labeled at contiguous carbons, crystallized, and studied by single-crystal X-ray crystallography and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to examine the degree to which density functional theory (DFT) can calculate one-bond 13C-13C spin-coupling constants (1JCC) in saccharides with sufficient accuracy to permit their use in MA'AT analysis, a newly-reported hybrid DFT/NMR method that provides probability distributions of molecular torsion angles in solution (Zhang et al., J. Phys. Chem. B, 2017, 121, 3042-3058; Meredith et al., J. Chem. Inf. Model., 2022, 62, 3135-3141). Experimental 1JCC values in crystalline samples of the doubly 13C-labeled compounds were measured by solid-state 13C NMR and compared to those calculated from five different DFT models: (1) 1JCC values calculated from single structures identical to those observed in crystalline samples by X-ray crystallography (all atom refinement); (2) 1JCC values calculated from the single structures in (1) but after Hirshfeld atom refinement (HAR); (3) 1JCC values calculated from the single structures in (1) after DFT-optimization of hydrogen atoms only; and (4 and 5) 1JCC values calculated in rotamers of torsion angle θ2 (C1-C2-O2-O2H) or ω (C4-C5-C6-O6) from which either specific or generalized parameterized equations were obtained and used to calculate 1JCC values in the specific θ2 or ω rotamers observed in crystalline samples. Good qualitative agreement was observed between calculated 1JCC values and those measured by solid-state 13C NMR regardless of the DFT model, but in no cases were calculated 1JCC values quantitative, differing (over-estimated) on average by 4-5% from experimental values. These findings, and those reported recently from solution NMR studies (Tetrault et al., J. Phys. Chem. B 2022, 126, 9506-9515), indicate that improvements in DFT calculations are needed before calculated 1JCC values can be used directly as reliable constraints in MA'AT analyses of saccharides in solution.

4.
J Org Chem ; 87(13): 8368-8379, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687878

RESUMO

MA'AT analysis has been applied to model the conformational properties of N-acetyl side-chains in biologically important GlcNAc and ManNAc monosaccharides and in a ßGlcNAc-(1→4)-ßGlcNAc disaccharide. Density functional theory calculations were conducted to obtain parameterized equations that relate the magnitudes and signs of 10 spin-coupling constants to conformations of the C2-N2 bonds of GlcNAc and ManNAc. Six of these equations were used with experimental J-couplings, measured in H2O/2H2O and DMSO-d6 solvents in selectively 13C-labeled compounds, to model the C1-C2-N2-C1' torsion angle (θ1) in GlcNAc and ManNAc residues. MA'AT analysis gave mean values of θ1 of 106° for αGlcNAc and ∼116° for ßGlcNAc residues, with circular standard deviations (CSDs) of 21-22° in aqueous solution, in excellent agreement with those obtained by aqueous molecular dynamics (MD) simulation. Parameter space plots revealed unique MA'AT fits of the data, and root mean squared deviations (<0.2 Hz) were twofold smaller than those back-calculated from MD models, indicating that the MA'AT models better fit the experimental J-couplings. Context effects on both θ1 values were found to be small in a ßGlcNAc-(1→4)-ßGlcNAc disaccharide. MA'AT analysis gave a mean value of θ1 of 249° for αManNAc in H2O/2H2O, with a CSD of ∼19°, with both values in good agreement with MD. MA'AT models of N-acetyl side-chains are similar to those obtained previously for O-acetyl side-chains (J. Phys. Chem. B 2017, 121, 66-77). Both O- and N-acetylation conformationally constrain the C-O or C-N bonds relative to the same bonds in unsubstituted compounds. The present work confirms the ability of MA'AT analysis to reveal relatively small changes in mean molecular torsion angles in solution and provides additional evidence of the method as an experimental tool complementary to MD simulation.


Assuntos
Carboidratos , Monossacarídeos , Configuração de Carboidratos , Carboidratos/química , Dissacarídeos/química , Conformação Molecular , Simulação de Dinâmica Molecular
5.
Phys Chem Chem Phys ; 21(42): 23576-23588, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31621725

RESUMO

Solid-state 13C NMR spectroscopy has been used in conjunction with selectively 13C-labeled mono- and disaccharides to measure 13C-13C spin-couplings (JCC) in crystalline samples. This experimental approach allows direct correlation of JCC values with specific molecular conformations since, in crystalline samples, molecular conformation is essentially static and can be determined by X-ray crystallography. JCC values measured in the solid-state in known molecular conformations can then be compared to corresponding JCC values calculated in the same conformations using density functional theory (DFT). The latter comparisons provide important validation of DFT-calculated J-couplings, which is not easily obtained by other approaches and is fundamental to obtaining reliable experiment-based conformational models from redundant J-couplings by MA'AT analysis. In this study, representative 1JCC, 2JCCC and 3JCOCC values were studied as either intra-residue couplings in the aldohexopyranosyl rings of monosaccharides or inter-residue (trans-glycoside) couplings in disaccharides. The results demonstrate that (a) accurate JCC values can be measured in crystalline saccharides that have been suitably labeled with 13C, and (b) DFT-calculated JCC values compare favorably with those determined by solid-state 13C NMR when molecular conformation is a constant in both determinations.

6.
J Org Chem ; 84(4): 1706-1724, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30624062

RESUMO

NMR studies of two 13C-labeled disaccharides and a tetrasaccharide were undertaken that comprise the backbone of a novel thermal hysteresis glycolipid containing a linear glycan sequence of alternating [ßXyl p-(1→4)-ßMan p-(1→4)] n dimers. Experimental trans-glycoside NMR J-couplings, parameterized equations obtained from density functional theory (DFT) calculations, and an in-house circular statistics package ( MA'AT) were used to derive conformational models of linkage torsion angles ϕ and ψ in solution, which were compared to those obtained from molecular dynamics simulations. Modeling using different probability distribution functions showed that MA'AT models of ϕ in ßMan(1→4)ßXyl and ßXyl(1→4)ßMan linkages are very similar in the disaccharide building blocks, whereas MA'AT models of ψ differ. This pattern is conserved in the tetrasaccharide, showing that linkage context does not influence linkage geometry in this linear system. Good agreement was observed between the MA'AT and MD models of ψ with respect to mean values and circular standard deviations. Significant differences were observed for ϕ, indicating that revision of the force-field employed by GLYCAM is probably needed. Incorporation of the experimental models of ϕ and ψ into the backbone of an octasaccharide fragment leads to a helical amphipathic topography that may affect the thermal hysteresis properties of the glycolipid.

7.
J Biol Chem ; 293(51): 19546-19558, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30429221

RESUMO

In response to genotoxic stress, the tumor suppressor protein p73 induces apoptosis and cell cycle arrest. Despite extensive studies on p73-mediated apoptosis, little is known about the cytoplasmic apoptotic function of p73. Here, using H1299 lung cancer cells and diverse biochemical approaches, including colony formation, DNA fragmentation, GST pulldown, and apoptosis assays along with NMR spectroscopy, we show that p73 induces transcription-independent apoptosis via its transactivation domain (TAD) through a mitochondrial pathway and that this apoptosis is mediated by the interaction between p73-TAD and the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-XL or BCL2L1). This binding disrupted an interaction between Bcl-XL and the pro-apoptotic protein BH3-interacting domain death agonist (Bid). In particular, we found that a 16-mer p73-TAD peptide motif (p73-TAD16) mediates transcription-independent apoptosis, accompanied by cytochrome c release from the mitochondria, by interacting with Bcl-XL Interestingly, the structure of the Bcl-XL-p73-TAD16 peptide complex revealed a novel mechanism of Bcl-XL recognition by p73-TAD. We observed that the α-helical p73-TAD16 peptide binds to a noncanonical site in Bcl-XL, comprising the BH1, BH2, and BH3 domains in an orientation opposite to those of pro-apoptotic BH3 peptides. Taken together, our results indicate that the cytoplasmic apoptotic function of p73 is mediated through a noncanonical mode of Bcl-XL recognition. This finding sheds light on a critical transcription-independent, p73-mediated mechanism for apoptosis induction, which has potential implications for anticancer therapy.


Assuntos
Apoptose , Citoplasma/metabolismo , Proteína Tumoral p73/metabolismo , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral , Citoplasma/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Transcrição Gênica , Proteína Tumoral p73/química , Proteína bcl-X/genética
8.
Int J Ment Health Syst ; 10: 51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504141

RESUMO

BACKGROUND: Korea has experienced diverse kind of disasters these days. Among them the 2015 middle eastern respiratory syndrome (MERS) outbreak imposed great psychological stress on almost all Korean citizens. Following the MERS outbreak, government is reviewing overall infectious disease management system and prioritizing the establishment of mental health service systems for infectious disease. This study makes suggestions for implementing disaster-related mental health service systems by analyzing the example of Gyeonggi Province, which proactively intervened with residents' psychological problems caused by the large-scale outbreak of an infectious disease. CASE DESCRIPTION: Mental health service system for MERS victims had the following two parts: a mental health service for people who had been placed in quarantine and a service provided to families of patients who had died or recovered patients. The government of Gyeonggi province, public health centers, regional and local Community Mental Health Centers and the National Center for Crisis Mental Health Management participated in this service system. Among 1221 Gyeonggi people placed in quarantine and who experienced psychological and emotional difficulties, 350 required continuing services; 124 of this group received continuing services. That is, 35 % of people who required psychological intervention received contact from service providers and received the required services. CONCLUSIONS: This study reflects a proactive monitoring system for thousands of people placed under quarantine for the first time in Korea. It is significant that the service utilization rate by a proactive manner, that is the professionals administering it actively approached and contacted people with problems rather than passively providing information was much higher than other general mental health situation in Korea. The core value of public mental health services is adequate public accessibility; it is therefore essential for governments to strengthen their professional competence and establish effective systems. These criteria should also be applied to psychological problems caused by disastrous infectious disease outbreaks.

9.
BMB Rep ; 48(2): 81-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25441426

RESUMO

p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transcrição Gênica , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Receptor fas/química , Receptor fas/metabolismo
10.
J Mol Biol ; 427(2): 371-386, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25463440

RESUMO

The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21(Cip1), p27(Kip1) and p57(Kip2). Their kinase inhibitory activities are mediated by a homologous N-terminal kinase inhibitory domain. The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the kinase inhibitory domain and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, as well as its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Ligação ao Cálcio/genética , Ciclo Celular , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais
11.
PLoS One ; 8(10): e75998, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098417

RESUMO

Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the (1)H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender.


Assuntos
Leptina/deficiência , Metabolômica , Obesidade/metabolismo , Obesidade/urina , Caracteres Sexuais , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Feminino , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Obesos , Análise Multivariada , Obesidade/sangue
12.
J Biol Chem ; 288(10): 7387-98, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23316052

RESUMO

Molecular interactions between the tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins play an important role in the transcription-independent apoptosis of p53. The p53 transactivation domain (p53TAD) contains two conserved ΦXXΦΦ motifs (Φ indicates a bulky hydrophobic residue and X is any other residue) referred to as p53TAD1 (residues 15-29) and p53TAD2 (residues 39-57). We previously showed that p53TAD1 can act as a binding motif for anti-apoptotic Bcl-2 family proteins. In this study, we have identified p53TAD2 as a binding motif for anti-apoptotic Bcl-2 family proteins by using NMR spectroscopy, and we calculated the structures of Bcl-X(L)/Bcl-2 in complex with the p53TAD2 peptide. NMR chemical shift perturbation data showed that p53TAD2 peptide binds to diverse members of the anti-apoptotic Bcl-2 family independently of p53TAD1, and the binding between p53TAD2 and p53TAD1 to Bcl-X(L) is competitive. Refined structural models of the Bcl-X(L)·p53TAD2 and Bcl-2·p53TAD2 complexes showed that the binding sites occupied by p53TAD2 in Bcl-X(L) and Bcl-2 overlap well with those occupied by pro-apoptotic BH3 peptides. Taken together with the mutagenesis, isothermal titration calorimetry, and paramagnetic relaxation enhancement data, our structural comparisons provided the structural basis of p53TAD2-mediated interaction with the anti-apoptotic proteins, revealing that Bcl-X(L)/Bcl-2, MDM2, and cAMP-response element-binding protein-binding protein/p300 share highly similar modes of binding to the dual p53TAD motifs, p53TAD1 and p53TAD2. In conclusion, our results suggest that the dual-site interaction of p53TAD is a highly conserved mechanism underlying target protein binding in the transcription-dependent and transcription-independent apoptotic pathways of p53.


Assuntos
Apoptose , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Supressora de Tumor p53/química , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Calorimetria , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
13.
Biol Chem ; 393(4): 259-74, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23029651

RESUMO

The classic structure-function paradigm has been challenged by a recently identified class of proteins: intrinsically disordered proteins (IDPs). Despite their lack of stable secondary or tertiary structure, IDPs are prevalent in all forms of life and perform myriad cellular functions, including signaling and regulation. Importantly, disruption of IDP homeostasis is associated with numerous human diseases, including cancer and neurodegeneration. Despite wide recognition of IDPs, the molecular mechanisms underlying their functions are not fully understood. Here we review the structural features and disorder-function relationships for p21 and p27, two cyclin-dependent kinase (Cdk) regulators involved in controlling cell division and fate. Studies of p21 bound to Cdk2/cyclin A revealed that a helix stretching mechanism mediates binding promiscuity. Further, investigations of Tyr88-phosphorylated p27 identified a signaling conduit that controls cell division and is disrupted in certain cancers. These mechanisms rely upon a balance between nascent structure in the free state, induced folding upon binding, and persistent flexibility within functional complexes. Although these disorder-function relationships are likely to be recapitulated in other IDPs, it is also likely that the vocabulary of their mechanisms is much more extensive than is currently understood. Further study of the physical properties of IDPs and elucidation of their links with function are needed to fully understand the mechanistic language of IDPs.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos , Fosforilação , Transdução de Sinais/genética
14.
J Biomol NMR ; 54(3): 217-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23011410

RESUMO

Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.


Assuntos
Espectroscopia de Ressonância Magnética , Processamento de Proteína Pós-Traducional , Proteínas/química , Acetilação , Acilação , Alquilação , Aminoácidos/química , Aminoácidos/metabolismo , Arginina/metabolismo , Comunicação Celular , Células Eucarióticas/metabolismo , Glicosilação , Histidina/metabolismo , Lisina/metabolismo , Metilação , Fosforilação , Proteínas/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
15.
Biochem Soc Trans ; 40(5): 981-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22988851

RESUMO

Today, it is widely accepted that proteins that lack highly defined globular three-dimensional structures, termed IDPs (intrinsically disordered proteins), play key roles in myriad biological processes. Our understanding of how intrinsic disorder mediates biological function is, however, incomplete. In the present paper, we review disorder-mediated cell cycle regulation by two intrinsically disordered proteins, p21 and p27. A structural adaptation mechanism involving a stretchable dynamic linker helix allows p21 to promiscuously recognize the various Cdk (cyclin-dependent kinase)-cyclin complexes that regulate cell division. Disorder within p27 mediates transmission of an N-terminal tyrosine phosphorylation signal to a C-terminal threonine phosphorylation, constituting a signalling conduit. These mechanisms are mediated by folding upon binding p21/p27's regulatory targets. However, residual disorder within the bound state contributes critically to these functional mechanisms. Our studies provide insights into how intrinsic protein disorder mediates regulatory processes and opportunities for designing drugs that target cancer-associated IDPs.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/química , Inibidor de Quinase Dependente de Ciclina p27/química , Humanos , Modelos Moleculares
17.
Protein Sci ; 18(2): 337-47, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19165719

RESUMO

Probably the most unusual class of proteins in nature is the intrinsically unstructured proteins (IUPs), because they are not structured yet play essential roles in protein-protein signaling. Many IUPs can bind different proteins, and in many cases, adopt different bound conformations. The p21 protein is a small IUP (164 residues) that is ubiquitous in cellular signaling, for example, cell cycle control, apoptosis, transcription, differentiation, and so forth; it binds to approximately 25 targets. How does this small, unstructured protein recognize each of these targets with high affinity? Here, we characterize residual structural elements of the C-terminal segment of p21 encompassing residues 145-164 using a combination of NMR measurements and molecular dynamics simulations. The N-terminal half of the peptide has a significant helical propensity which is recognized by calmodulin while the C-terminal half of the peptide prefers extended conformations that facilitate binding to the proliferating cell nuclear antigen (PCNA). Our results suggest that the final bound conformations of p21 (145-164) pre-exist in the free peptide even without its binding partners. While the conformational flexibility of the p21 peptide is essential for adapting to diverse binding environments, the intrinsic structural preferences of the free peptide enable promiscuous yet high affinity binding to a diverse array of molecular targets.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/química , Fragmentos de Peptídeos/química , Algoritmos , Sítios de Ligação/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Dicroísmo Circular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica , Dobramento de Proteína
18.
J Biol Chem ; 282(17): 12989-3002, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17261584

RESUMO

The leucine zipper (LZ) domain of the HY5 transcription factor from Arabidopsis thaliana has unique primary structural properties, including major occupation by the Leu residues as well as two buried polar residues in the a positions and a localized distribution of charged and polar residues in the first three heptad repeats. In this study, we solved the crystal structure of the HY5 LZ domain and show that the peculiarities in the primary sequence yield unusual structural characteristics. For example, the HY5 LZ domain exhibits a bipartite charge distribution characterized by a highly negative electrostatic surface potential in its N-terminal half and a nearly neutral potential in its C-terminal half. The LZ N-terminal region also contains two consecutive putative trigger sites for dimerization of the coiled coils. In addition, two buried asparagines at a positions 19 and 33 in the HY5 LZ domain display distinct modes of polar interaction. Whereas Asn(19) shows a conformational flip-flop, Asn(33) is engaged in a permanent hydrogen bond network. CD spectropolarimetry and analytical ultracentrifugation experiments performed with versions of the HY5 LZ domain containing mutations in the a positions yielded further evidence that position a amino acid residues are crucial for achieving an oligomeric state and maintaining stability. However, a low correlation between position a amino acid preference, core packing geometry, and rotamer conformations suggests that the oligomeric state of the LZ domain is not governed entirely by known structural properties. Taken together, our results suggest structural factors conferring conformational integrity of the HY5 LZ homodimer that are more complicated than proposed previously.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Fatores de Transcrição de Zíper de Leucina Básica/química , Modelos Moleculares , Proteínas Nucleares/química , Dimerização , Zíper de Leucina , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
19.
Proteins ; 65(4): 856-66, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17001643

RESUMO

The Arabidopsis HY5 protein is a basic leucine zipper (bZIP) transcription factor that promotes photomorphogenesis. HY5 binds directly to the promoters of light responsible element containing the G-box and thus regulates their transcriptional activity. The level and activity of HY5 are negatively regulated, in a light-dependent manner, by interaction with the COP1 protein, which targets HY5 for proteasome-mediated degradation in the nucleus. Despite its essential roles in plant development, no structural information exists for HY5. In this article, we report the first structural and biophysical characterization of HY5. Using limited proteolysis in combination with mass spectrometry, circular dichroism, and nuclear magnetic resonance spectroscopy, we have deduced that the N-terminal 77 amino acids of HY5 form a premolten globular structure, while amino acids 78-110, which constitute the basic region (BR) of the protein, exist in a molten globule state. Our studies also revealed that the overall structural features of full-length HY5 are dominated largely by the disordered N-terminal domain, despite the existence of a bZIP domain at its C-terminus. We propose that HY5 is a member of the intrinsically unstructured protein (IUP) family, and that HY5 functions as an unstructured protein and benefits from being the same, in vivo.


Assuntos
Proteínas de Arabidopsis/química , Fatores de Transcrição de Zíper de Leucina Básica/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/isolamento & purificação , Fatores de Transcrição de Zíper de Leucina Básica/isolamento & purificação , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Genéticos , Proteínas Nucleares/isolamento & purificação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA