Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38148165

RESUMO

Neurons receive, process, and integrate inputs. These operations are organized by dendrite arbor morphology, and the dendritic arborization (da) neurons of the Drosophila peripheral sensory nervous system are an excellent experimental model for examining the differentiation processes that build and shape the dendrite arbor. Studies in da neurons are enabled by a wealth of fly genetic tools that allow targeted neuron manipulation and labeling of the neuron's cytoskeletal or organellar components. Moreover, as da neuron dendrite arbors cover the body wall, they are highly accessible for live imaging analysis of arbor patterning. Here, we outline the structure and function of different da neuron types and give examples of how they are used to elucidate central mechanisms of dendritic arbor formation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38148167

RESUMO

Live imaging approaches are essential for monitoring how neurons go through a coordinated series of differentiation steps in their native mechanical and chemical environment. These imaging approaches also allow the study of dynamic subcellular processes such as cytoskeleton remodeling and the movement of organelles. Drosophila dendritic arborization (da) neurons are a powerful experimental system for studying the dendrite arbor in live animals. da neurons are located on the internal surface of the body wall and, therefore, are easily accessible for imaging. Moreover, many genetic tools target da neurons to disrupt genes or proteins of interest and allow the investigator to visualize fluorescent markers and endogenously tagged proteins in the neurons. This protocol introduces methods for preparing and mounting intact Drosophila embryos, larvae, and pupae, allowing live imaging of dynamic cellular processes in da neurons.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38148173

RESUMO

Drosophila dendritic arborization (da) neurons are a powerful model for studying neuronal differentiation and sensory functions. A general experimental strength of this model is the examination of the neurons in situ in the body wall. However, for some analyses, restricted access to the neurons in situ causes difficulty; da neuron cultures circumvent this. Here, we outline isolation and culture techniques for larval and pupal da neurons. Investigators can use these cultures to perform high-resolution imaging, quantitative immunohistochemistry, and electrophysiology.

4.
Neuron ; 106(3): 452-467.e8, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155441

RESUMO

Dendrite arbor pattern determines the functional characteristics of a neuron. It is founded on primary branch structure, defined through cell intrinsic and transcription-factor-encoded mechanisms. Developing arbors have extensive acentrosomal microtubule dynamics, and here, we report an unexpected role for the atypical actin motor Myo6 in creating primary branch structure by specifying the position, polarity, and targeting of these events. We carried out in vivo time-lapse imaging of Drosophila adult sensory neuron differentiation, integrating machine-learning-based quantification of arbor patterning with molecular-level tracking of cytoskeletal remodeling. This revealed that Myo6 and the transcription factor Knot regulate transient surges of microtubule polymerization at dendrite tips; they drive retrograde extension of an actin filament array that specifies anterograde microtubule polymerization and guides these microtubules to subdivide the tip into multiple branches. Primary branches delineate functional compartments; this tunable branching mechanism is key to define and diversify dendrite arbor compartmentalization.


Assuntos
Dendritos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Neurogênese , Animais , Linhagem Celular , Células Cultivadas , Dendritos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Microtúbulos/metabolismo , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição/metabolismo
5.
Neurosci Res ; 138: 70-78, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30243907

RESUMO

Neurons connect through dendrite arbors to receive inputs from their appropriate partners. The branching pattern, size, and input distribution in the arbor determine neuron function. Complex nervous system activity depends on creating and wiring a wide diversity of neuron types, each with a characteristic arbor organization. Here we discuss how, by tracking arbor differentiation in vivo, a mature dendrite arbor pattern is derived from the compound outcome of a series of different stages of arbor elaboration. We highlight core stages of elaboration shared between different model systems, and how regulating the transformation between these stages controls the dendrite arbor differentiation process. Finally, we discuss how control over these transformations creates neuron type-specific dendrite arbor morphologies, contributes to nervous system evolution, and is perturbed in disease.


Assuntos
Diferenciação Celular/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Animais , Humanos
6.
Nat Neurosci ; 18(10): 1437-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26322925

RESUMO

Neuronal dendrite branching is fundamental for building nervous systems. Branch formation is genetically encoded by transcriptional programs to create dendrite arbor morphological diversity for complex neuronal functions. In Drosophila sensory neurons, the transcription factor Abrupt represses branching via an unknown effector pathway. Targeted screening for branching-control effectors identified Centrosomin, the primary centrosome-associated protein for mitotic spindle maturation. Centrosomin repressed dendrite branch formation and was used by Abrupt to simplify arbor branching. Live imaging revealed that Centrosomin localized to the Golgi cis face and that it recruited microtubule nucleation to Golgi outposts for net retrograde microtubule polymerization away from nascent dendrite branches. Removal of Centrosomin enabled the engagement of wee Augmin activity to promote anterograde microtubule growth into the nascent branches, leading to increased branching. The findings reveal that polarized targeting of Centrosomin to Golgi outposts during elaboration of the dendrite arbor creates a local system for guiding microtubule polymerization.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/metabolismo , Microtúbulos/metabolismo , Neurogênese/fisiologia , Animais , Animais Geneticamente Modificados , Polaridade Celular , Imunoprecipitação da Cromatina , Reação em Cadeia da Polimerase , Células Receptoras Sensoriais/metabolismo
7.
Mol Cell Neurosci ; 41(4): 464-73, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19463953

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) transduces signal and promotes neurite outgrowths in diverse neurons through the interactions of GDNF family receptor alpha 1 (GFRalpha1) and other co-receptors including Ret receptor tyrosine kinase and NCAM. GFRalpha1 is alternatively spliced into two isoforms, GFRalpha1a and GFRalpha1b, with five amino acids difference. In this study, we found that both GFRalpha1a and GFRalpha1b were expressed in various human tissues. Interestingly, when stimulated with GDNF, GFRalpha1a but not GFRalpha1b promoted neurite outgrowth in neuroblastoma cells through the activations of ERK1/2, Rac1 and Cdc42. Remarkably, in cells co-expressing GFRalpha1a and GFRalpha1b, GDNF inhibited neurite outgrowths. The inhibitory activity of GFRalpha1b was dependent on RhoA and ROCK activation. Furthermore, GFRalpha1b but not GFRalpha1a activated Rho and various ROCK downstream effectors LIMK1/2, cofilin and MLC2. This study demonstrates the hitherto unrecognized roles of GFRalpha1 isoforms in the activation of distinct signaling pathways and in neurite outgrowths.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neuritos/fisiologia , Isoformas de Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sistema Nervoso Central/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Camundongos , Neuroblastoma , Neurturina/farmacologia , Fator Rho/metabolismo , Transfecção/métodos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
J Neurosci ; 27(21): 5603-14, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17522305

RESUMO

The glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) belong to a structurally related family of neurotrophic factors. NTN exerts its effect through a multicomponent receptor system consisting of the GDNF family receptor alpha2 (GFR alpha2), RET, and/or NCAM (neural cell adhesion molecule). GFR alpha2 is alternatively spliced into at least three isoforms (GFR alpha2a, GFR alpha2b, and GFR alpha2c). It is currently unknown whether these isoforms share similar functional and biochemical properties. Using highly specific and sensitive quantitative real-time PCR, these isoforms were found to be expressed at comparable levels in various regions of the human brain. When stimulated with GDNF and NTN, both GFR alpha2a and GFR alpha2c, but not GFR alpha2b, promoted neurite outgrowth in transfected Neuro2A cells. These isoforms showed ligand selectivity in MAPK (mitogen-activated protein kinase) [ERK1/2 (extracellular signal-regulated kinase 1/2)] and Akt signaling. In addition, the GFR alpha2 isoforms regulated different early-response genes when stimulated with GDNF or NTN. In coexpression studies, GFR alpha2b was found to inhibit ligand-induced neurite outgrowth by GFR alpha2a and GFR alpha2c. Stimulation of GFR alpha2b also inhibited the neurite outgrowth induced by GFR alpha1a, another member of the GFR alpha. Furthermore, activation of GFR alpha2b inhibited neurite outgrowth induced by retinoic acid and activated RhoA. Together, these data suggest a novel paradigm for the regulation of growth factor signaling and neurite outgrowth via an inhibitory splice variant of the receptor. Thus, depending on the expressions of specific GFR alpha2 receptor spliced isoforms, GDNF and NTN may promote or inhibit neurite outgrowth through the multicomponent receptor complex.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Neuritos/fisiologia , Neurturina/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Processamento Alternativo/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Inibidores do Crescimento/fisiologia , Humanos , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
9.
Biomaterials ; 28(2): 203-10, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17034848

RESUMO

One major measurement of tissue-engineered constructs efficacy and performance is determining expression levels of genes of interest at the molecular level. This measurement is commonly carried out with reverse transcription-polymerase chain reaction (RT-PCR). In this study, we described a novel method in achieving absolute quantification of gene expression using real-time PCR (aqPCR). This novel method did not require molecular cloning steps to prepare the standards for quantification comparison. Standards were linear double-stranded DNA molecules instead of the typical gene-in-plasmid format. aqPCR could also be used to give relative quantification comparisons between samples simply by dividing the copy numbers readings of the gene of interest with that of the normalization gene. RNA was extracted from monolayer and from polycaprolactone scaffold cultures and assayed for beta-actin and osteocalcin genes. We compared our aqPCR method with end-point PCR since end-point PCR is still a common means of measuring gene expression in the biomaterials field. This study showed that aqPCR was a better method to quantify gene expression than end-point PCR. With our described linear DNA standards method, we were able to obtain not only relative quantification of osteocalcin and beta-actin expression level but also actual copy numbers of osteocalcin and beta-actin for the monolayer culture and to be 1.34 x 10(4) and 1.45 x 10(7) copies, respectively and for the scaffold cultures to be 772 and 2.83 x 10(5) copies, respectively per starting total RNA mass of 10 ng. The standards curves made from these linear DNA standards showed good linearity (R(2)=0.9964 and 0.9902 for osteocalcin and beta-actin standards graphs), ranged from 10 to 10(9) copies and of comparable accuracy to current absolute quantification real-time PCR methods (which used plasmid standards obtained through molecular cloning methods). Our method might be a viable and more user-friendly alternative to current absolute quantification real-time PCR protocols.


Assuntos
Materiais Biocompatíveis/metabolismo , Reação em Cadeia da Polimerase/normas , RNA Mensageiro/análise , Linhagem Celular Tumoral , Primers do DNA , Humanos , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/metabolismo
10.
J Neurochem ; 98(4): 1149-58, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16895582

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are structurally related neurotrophic factors that have both been shown to prevent the degeneration of dopaminergic neurons in vitro and in vivo. NTN and GDNF are thought to bind with different affinities to the GDNF family receptor alpha-2 (GFRalpha2), and can activate the same multi-component receptor system consisting of GFRalpha2, receptor tyrosine kinase Ret (RET) and NCAM. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that regulate gene expression through translational repression or RNA degradation. miRNAs have diverse functions, including regulating differentiation, proliferation and apoptosis in several organisms. It is currently unknown whether GDNF and NTN regulate the expression of miRNAs through activation of the same multi-component receptor system. Using quantitative real-time PCR, we measured the expression of some miRNA precursors in human BE(2)-C cells that express GFRalpha2 but not GFRalpha1. GDNF and NTN differentially regulate the expression of distinct miRNA precursors through the activation of mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2). This study showed that the expression of distinct miRNA precursors is differentially regulated by specific ligands through the activation of GFRalpha2.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Mitocôndrias/metabolismo , Neurturina/fisiologia , RNA/biossíntese , Células Cultivadas , Ativação Enzimática/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Ligantes , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurturina/biossíntese , Neurturina/metabolismo , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
11.
Brain Res Mol Brain Res ; 139(1): 1-12, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-15979200

RESUMO

Glial-cell-line-derived neurotrophic factor (GDNF) exerts its effect through a multi-component receptor system consisting of GFRalpha1, RET and NCAM. Two highly homologous alternatively spliced GFRalpha1 isoforms (GFRalpha1a and GFRalpha1b) have previously been identified. In this study, isoform specific real-time PCR assays were used to quantify the expression levels of GFRalpha1, RET and NCAM isoforms in murine embryonic and adult tissues. The expression levels of GFRalpha1b were found to be comparable to that of GFRalpha1a in peripheral tissues. However, GFRalpha1a was the predominant isoform expressed in the whole brain. The co-expressions of GFRalpha1 and the co-receptors were developmentally regulated and differentially expressed in some tissues. Microarray analyses of GFRalpha1 isoforms transfected cells stimulated with NTN showed distinct and non-overlapping gene profiles. These observations are consistent with the emerging view that the combinatorial interactions of the spliced isoforms of GFRalpha, RET and NCAM may contribute to the pleiotropic biological responses.


Assuntos
Processamento Alternativo , Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Moléculas de Adesão de Célula Nervosa/genética , Proteínas Proto-Oncogênicas c-ret/genética , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Ligantes , Camundongos , Moléculas de Adesão de Célula Nervosa/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA