Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Oleo Sci ; 73(7): 1027-1033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945921

RESUMO

This paper reports a novel α-gel formulation technology referred to as polymer complexed lamella (PCL) that uses hydroxypropyl methyl cellulose (HPMC) and glycerol. The PCL method suppressed lipid crystallization even after drying. This effect was maximized by the addition of HPMC and glycerol at high temperature. HPMC and lipids coexisted when mixed at high temperature, which decreased the mobility of HPMC, an effect that was enhanced by the strong interaction of glycerol with HPMC. These results indicate that mixing of HPMC with glycerol directly regulates the lipid structure and suppresses crystallization. PCL also maintained the effect of occlusion related to the moisturization of skin, even if the membrane was repeatedly bent such as in facial expressions.


Assuntos
Cristalização , Géis , Glicerol , Derivados da Hipromelose , Derivados da Hipromelose/química , Glicerol/química , Géis/química , Dessecação/métodos , Temperatura Alta , Lipídeos/química , Polímeros/química
2.
Colloids Surf B Biointerfaces ; 231: 113538, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738871

RESUMO

Topical skin formulations often include penetration enhancers that interact with the outer stratum corneum (SC) layer to chemically enhance diffusion. Alternatively, penetration can be mechanically enhanced with simple rubbing in the presence of solid particles sometimes included to exfoliate the top layers of the SC. Our goal was to evaluate micron-sized carbon dioxide bubbles included in a foamed moisturizing formulation as a mechanical penetration enhancement strategy. We show that moisturizing foam bubbles cause an increase in SC formulation penetration using both mechanical and spectroscopic characterization. Our results suggest viscous liquid film drainage between coalescing gaseous bubbles creates local regions of increased hydrodynamic pressure in the foam liquid layer adjacent to the SC surface that enhances treatment penetration. An SC molecular diffusion model is used to rationalize the observed behavior. The findings indicate marked increased levels of treatment concentration in the SC at 2 h and that persists to 18 h after exposure, far exceeding non-foamed treatments. The study suggests an alternate strategy for increasing formulation penetration with a non-chemical mechanism.


Assuntos
Dióxido de Carbono , Absorção Cutânea , Pele/metabolismo , Epiderme/metabolismo , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA