Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928834

RESUMO

Soybean agglutinin (SBA) is a primary antinutritional factor in soybeans that can inhibit the growth of humans and mammals, disrupt the intestinal environment, and cause pathological changes. Therefore, detecting and monitoring SBA in foods is essential for safeguarding human health. In this paper, M13 phage-displayed nanobodies against SBA were isolated from a naive nanobody library. An M13 phage-displayed nanobody-based competitive enzyme-linked immunosorbent assay (P-cELISA) was then established for SBA analysis using biotinylated anti-M13 phage antibody (biotin-anti-M13) and streptavidin poly-HRP conjugate (SA-poly-HRP). The biotin-anti-M13@SA-poly-HRP probe can easily amplify the detection signal without the chemical modifications of phage-displayed nanobodies. The established P-cELISA presented a linear detection range of 0.56-250.23 ng/mL and a limit of detection (LOD) of 0.20 ng/mL, which was 12.6-fold more sensitive than the traditional phage-ELISA. Moreover, the developed method showed good specificity for SBA and acceptable recoveries (78.21-121.11%) in spiked wheat flour, albumen powder, and whole milk powder. This study proposes that P-cELISA based on biotin-anti-M13@SA-poly-HRP may provide a convenient and effective strategy for the sensitive detection of SBA.

2.
Foods ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36140908

RESUMO

In this study, a quantum-dot-bead (QB)-based fluorescence-linked immunosorbent assay (FLISA) using nanobodies was established for sensitive determination of the Cry2A toxin in cereal. QBs were used as the fluorescent probe and conjugated with a Cry2A polyclonal antibody. An anti-Cry2A nanobody P2 was expressed and used as the capture antibody. The results revealed that the low detection limit of the developed QB-FLISA was 0.41 ng/mL, which had a 19-times higher sensitivity than the traditional colorimetric ELISA. The proposed assay exhibited a high specificity for the Cry2A toxin, and it had no evident cross-reactions with other Cry toxins. The recoveries of Cry2A from the spiked cereal sample ranged from 86.6-117.3%, with a coefficient of variation lower than 9%. Moreover, sample analysis results of the QB-FLISA and commercial ELISA kit correlated well with each other. These results indicated that the developed QB-FLISA provides a potential approach for the sensitive determination of the Cry2A toxin in cereals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA