Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(26): e2402792, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616764

RESUMO

High-energy-density lithium metal batteries (LMBs) are limited by reaction or diffusion barriers with dissatisfactory electrochemical kinetics. Typical conversion-type lithium sulfur battery systems exemplify the kinetic challenges. Namely, before diffusing or reacting in the electrode surface/interior, the Li(solvent)x + dissociation at the interface to produce isolated Li+, is usually a prerequisite fundamental step either for successive Li+ "reduction" or for Li+ to participate in the sulfur conversions, contributing to the related electrochemical barriers. Thanks to the ideal atomic efficiency (100 at%), single atom catalysts (SACs) have gained attention for use in LMBs toward resolving the issues caused by the five types of barrier-restricted processes, including polysulfide/Li2S conversions, Li(solvent)x + desolvation, and Li0 nucleation/diffusion. In this perspective, the tandem reactions including desolvation and reaction or plating and corresponding catalysis behaviors are introduced and analyzed from interface to electrode interior. Meanwhile, the principal mechanisms of highly efficient SACs in overcoming specific energy barriers to reinforce the catalytic electrochemistry are discussed. Lastly, the future development of high-efficiency atomic-level catalysts in batteries is presented.

2.
ACS Appl Mater Interfaces ; 15(42): 49826-49834, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819877

RESUMO

Y3Fe5O12 (YIG) thin films are highly needed in microwave devices, but the low saturation magnetization and low dielectric constant greatly limit the application of YIG thin films. It was reported that the ion substitution, for example, Pr3+, could increase the dielectric constant of Y3-xPrxFe5O12 (YPrxIG). Unfortunately, the dielectric loss would also be significantly increased. In this work, [YPr0.20IG/YPr0.15IG/YPr0.10IG]N multilayer films were fabricated via the chemical solution deposition method, by designing a periodic structure with the [YPr0.20IG/YPr0.15IG/YPr0.10IG] composition gradient stack. In comparison to the average composition of YPr0.15IG, high saturation magnetization, high dielectric constant, and low loss were successfully simultaneously achieved in the multilayer structure. The N = 6 film exhibited a higher saturation magnetization of 252.8 emu/cm3 than the value (213.1) of the YPr0.15IG (average composition) film. The dielectric constant of the N = 6 film reached 25.6 in contrast to the value of 18.3 for the YPr0.15IG film at 12.4 GHz, which was the contribution of the rapid flip of the electric dipole of a single-unit dielectric material and the accumulation of interface charge. Furthermore, the dielectric loss of the film with N = 6 decreased to 0.0036 compared with the value (0.0102) of the average composition film. This work demonstrated a strategy of designing a periodic structure with a composition gradient stack unit to realize a good comprehensive dielectric property through taking advantage of the multiple effects of "coherent growth, component matching, and interface accumulation".

3.
Inorg Chem ; 62(38): 15736-15746, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37697809

RESUMO

Sn-based anodes are promising high-capacity anode materials for low-cost lithium ion batteries. Unfortunately, their development is generally restricted by rapid capacity fading resulting from large volume expansion and the corresponding structural failure of the solid electrolyte interphase (SEI) during the lithiation/delithiation process. Herein, heterostructural core-shell SnO2-layer-wrapped Sn nanoparticles embedded in a porous conductive nitrogen-doped carbon (SOWSH@PCNC) are proposed. In this design, the self-sacrificial Zn template from the precursors is used as the pore former, and the LiF-Li3N-rich SEI modulation layer is motivated to average uniform Li+ flux against local excessive lithiation. Meanwhile, both the chemically active nitrogen sites and the heterojunction interfaces within SnO2@Sn are implanted as electronic/ionic promoters to facilitate fast reaction kinetics. Consequently, the as-converted SOWSH@PCNC electrodes demonstrate a significantly boosted Li+ capacity of 961 mA h g-1 at 200 mA g-1 and excellent cycling stability with a low capacity decaying rate of 0.071% after 400 cycles at 500 mA g-1, suggesting their great promise as an anode material in high-performance lithium ion batteries.

4.
ACS Appl Mater Interfaces ; 14(40): 45679-45687, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166313

RESUMO

Magnetic nanofiller is helpful for improving the piezoelectric properties of P(VDF-TrFE)-based composites, which shows promising potential as a flexible sensor or energy harvester. In this work, we use the interaction between the magnetic nanofiller and magnetic field to modify the structure of CoFe2O4 (CFO)@polydopamine (PDA)/P(VDF-TrFE) composite, in which CFO@PDA works as the nanofiller into the P(VDF-TrFE) matrix. It was found that the magnetic field orientation during polymer curing can significantly increase the content of the ß-phase and d33 of the composite. Regarding a typical composite film with 7 wt % CFO@PDA, the composite exhibits versatile sensing originated from the ball impact, hot-water droplet, bending, and pressing. In a noncontact magnetic field-driven experiment, the magnetic field oriented film produced the highest output voltages of 17.4 mV at 4 Hz and 12 mV at a drive amplitude of 19 Vpp, in contrast to the values of 7.1 mV and 7 mV for the film without magnetic field orientation, respectively. The LED without any charging capacitor can be instantaneously lighted through vertically pressing the oriented films. Thus, this work proposes a strategy of magnetic field orientation to improve the piezoelectric performance of the CFO@PDA/P(VDF-TrFE) multifunctional composite film.

5.
Adv Sci (Weinh) ; 9(23): e2202244, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35673962

RESUMO

Lithium metal is considered as the most prospective electrode for next-generation energy storage systems due to high capacity and the lowest potential. However, uncontrollable spatial growth of lithium dendrites and the crack of solid electrolyte interphase still hinder its application. Herein, Schottky defects are motivated to tune the 4f-center electronic structures of catalysts to provide active sites to accelerate Li transport kinetics. As experimentally and theoretically confirmed, the electronic density is redistributed and affected by the Schottky defects, offering numerous active catalytic centers with stronger ion diffusion capability to guide the horizontal lithium deposition against dendrite growth. Consequently, the Li electrode with artificial electronic-modulation layer remarkably decreases the barriers of desolvation, nucleation, and diffusion, extends the dendrite-free plating lifespan up to 1200 h, and improves reversible Coulombic efficiency. With a simultaneous catalytic effect on the conversions of sulfur species at the cathodic side, the integrated Li-S full battery exhibits superior rate performance of 653 mA h g-1 at 5 C, high long-life capacity retention of 81.4% at 3 C, and a high energy density of 2264 W h kg-1 based on sulfur in a pouch cell, showing the promising potential toward high-safety and long-cycling lithium metal batteries.

6.
Nanoscale ; 14(26): 9218-9247, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726826

RESUMO

Nowadays, the extensive utilization of electronic devices and equipment inevitably leads to severe electromagnetic interference (EMI) issues. Therefore, EMI shielding materials have drawn considerable attention, and great effort has been devoted to the exploration of high-efficiency EMI shielding materials. As a novel kind of 2D transition metal carbide material, MXenes have been widely investigated for EMI shielding in the past few years due to their extraordinary electrical conductivity, large specific surface area, light weight, and easy processability. In view of the great achievements in MXene-based materials for EMI shielding, herein, we reviewed the recent studies on the structural design and evolution of MXenes and their composites for EMI shielding. First, the methods for structural control of MXenes, including HF etching, in situ HF etching, fluorine-free etching, electrochemical etching, and molten salt etching, are systematically summarized. Then we illustrate the fundamental relationship between the microstructure of MXenes and the EMI shielding mechanism. In the following, the effects of different synthesis methods and structures of MXene-based composite materials as well as their EMI shielding performances are comprehensively discussed. Lastly, future prospects for the development of MXene-based composite materials in EMI shielding applications are commented on.

7.
Opt Express ; 29(20): 31607-31614, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615251

RESUMO

This paper presents a snapshot spectroscopic Mueller matrix polarimetry based on spectral modulation. The polarization state generator consists of a linear polarizer in front of two high-order retarders, and the polarization state analyzer is formed by two non-polarization beam splitters incorporated with three high-order retarder/linear analyzer pairs. It can simultaneously generate three modulated spectra used for reconstructing the 16 spectroscopic Mueller elements of the sample. Since each of the modulated spectra produces seven separate channels equally spaced in the Fourier domain, the channel bandwidth can be enhanced efficiently compared with the conventional spectrally modulated spectroscopic Mueller matrix polarimetry. The feasibility of the proposed spectroscopic Mueller matrix polarimetry is demonstrated by the experimental measurement of an achromatic quarter-wave plate.

8.
Nanoscale ; 13(33): 14214-14220, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477703

RESUMO

One of the promising research topics on two-dimensional (2D) van der Waals (vdW) material based devices is the nonvolatile electrical control of magnetism. Usually, it is very hard to tune ferromagnetic or antiferromagnetic ordering by ferroelectric polarization due to strong exchange coupling. The existence of vdW layer spacing, however, which is ubiquitous in 2D materials, makes interlayer magnetic exchange coupling much weaker than interlayer coupling. In this work, we design a multiferroic heterostructure composed of a CrOBr ferromagnetic bilayer and an In2Se3 ferroelectric monolayer. The weaker interlayer exchange coupling of the CrOBr bilayer makes it easier to be regulated by ferroelectric polarization, enabling reversible nonvolatile electric control of shifts between ferromagnetic and antiferromagnetic ordering. The unique electrically controlled interlayer magnetic coupling for tuning the overall magnetism may be available for the practical application of 2D vdW bilayer magnets in high-sensitivity sensors and high-density data storage.

9.
Opt Express ; 28(25): 37758-37772, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379605

RESUMO

A spectroscopic Mueller matrix polarimeter based on spectro-temporal modulation with a compact, low-cost, and birefringent crystal-based configuration has been developed. The polarization state generator and polarization state analyzer in the system consists of a polarizer in front of two high-order retarders with equal thickness and a rotating achromatic quarter wave-plate followed by a fixed analyzer, respectively. It can acquire the 16 spectroscopic elements of the Mueller matrix in broadband with a faster measurement speed than that of the conventional spectroscopic Mueller matrix polarimeter based on a dual-rotating retarder. In addition, the spectral polarization modulation provided by the polarization state generator can produce five separate channels in the Fourier domain, which leads to a larger bandwidth of each channel than that of the existing spectral modulated spectroscopic Mueller matrix polarimeters. Experiment on the measurements of an achromatic quarter-wave plate oriented at different azimuths and SiO2 thin films deposited on silicon wafers with different thicknesses are carried out to show the feasibility of the developed spectroscopic Mueller matrix polarimeter.

10.
Phys Chem Chem Phys ; 22(37): 21208-21221, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32930249

RESUMO

We perform first-principles molecular dynamics (FPMD) simulations together with a CI-NEB method to explore the structure, electrochemical properties and diffusion dynamics of a C2N monolayer saturated with various univalent, bivalent and trivalent metal ions. A characteristic irregular adsorption structure consisting of an inner coplanar layer at the large atomic pore and loosely bound outer layer is discovered for all six types of ions. The predicted specific capacities and mean open circuit voltages (OCVs) for them are: 600 mA h g-1, and 0.26 V (Na); 385 mA h g-1, and 1.56 V (K); 600 mA h g-1, and 0.96 V (Mg); 713 mA h g-1, and 1.31 V (Ca); 411 mA h g-1, and 1.40 V (Zn); 1175 mA h g-1, and 0.78 V (Al). For the energy favorable migration pathway, the diffusion energy barrier height for each ionic species is found to be 0.24 eV (Na+), 0.10 eV (K+), 0.25 eV (Mg2+) and 0.10 eV (Ca2+). The values are larger than 1.0 eV for both Zn2+ and Al3+. FPMD simulation at 400 K further predicted that the diffusion coefficients of Na and K atoms absorbed on the C2N monolayer are 5.33 × 10-9 m2 s-1 and 8.52 × 10-9 m2 s-1, respectively, which are one order of magnitude higher than those of other remaining ions discussed in our work. The C2N monolayer shows promising electrochemical properties and ion diffusion dynamics for use as the anode material in alkali metal ion batteries.

11.
J Adv Res ; 24: 371-377, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32477607

RESUMO

The perovskite oxide interface has attracted extensive attention as a platform for achieving strong coupling between ferroelectricity and magnetism. In this work, robust control of magnetoelectric (ME) coupling in the BiFeO3/BaTiO3 (BFO/BTO) heterostructure (HS) was revealed by using the first-principles calculation. Switching of the ferroelectric polarization of BTO induce large ME effect with significant changes on the magnetic ordering and easy magnetization axis, making up for the weak ME coupling effect of single-phase multiferroic BFO. In addition, the Dzyaloshinskii-Moriya interaction (DMI) and the exchange coupling constants J for the BFO part of the HSs are simultaneously manipulated by the ferroelectric polarization, especially the DMI at the interface is significantly enhanced, which is three or four times larger than that of the individual BFO bulk. This work paves the way for designing new nanomagnetic devices based on the substantial interfacial ME effect.

12.
Adv Sci (Weinh) ; 5(12): 1800855, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30581700

RESUMO

With the development of flexible electronics, the mechanical flexibility of functional materials is becoming one of the most important factors that needs to be considered in materials selection. Recently, flexible epitaxial nanoscale magnetic materials have attracted increasing attention for flexible spintronics. However, the knowledge of the bending coupled dynamic magnetic properties is poor when integrating the materials in flexible devices, which calls for further quantitative analysis. Herein, a series of epitaxial LiFe5O8 (LFO) nanostructures are produced as research models, whose dynamic magnetic properties are characterized by ferromagnetic resonance (FMR) measurements. LFO films with different crystalline orientations are discussed to determine the influence from magnetocrystalline anisotropy. Moreover, LFO nanopillar arrays are grown on flexible substrates to reveal the contribution from the nanoscale morphology. It reveals that the bending tunability of the FMR spectra highly depends on the demagnetization field energy of the sample, which is decided by the magnetism and the shape factor in the nanostructure. Following this result, LFO film with high bending tunability of microwave magnetic properties, and LFO nanopillar arrays with stable properties under bending are obtained. This work shows guiding significances for the design of future flexible tunable/stable microwave magnetic devices.

13.
ACS Appl Mater Interfaces ; 10(46): 39422-39427, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30394081

RESUMO

Recent development in magnetic nanostructures has promoted flexible electronics into the application of integrated devices. However, the magnetic properties of flexible devices strongly depend on the bending states. In order to realize the design of new flexible devices driven by an external field, the first step is to make the magnetic properties insensitive to the bending. Herein, a series of LiFe5O8 nanopillar arrays were fabricated, whose microwave magnetic properties can be modulated by tuning the nanostructure. This work demonstrates that nanostructure engineering is useful to control the bending sensitivity of microwave magnetism and further design stable flexible devices.

14.
Nanoscale Res Lett ; 13(1): 222, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30047015

RESUMO

The perpendicular magnetic anisotropy (PMA) has been achieved in Ta/Pd/CoFeMnSi (CFMS)/MgO/Pd film, in which the Heusler compound CoFeMnSi is one of the most promising candidates for spin gapless semiconductor (SGS). The strong PMA, with the effective anisotropy constant Keff of 5.6 × 105 erg/cm3 (5.6 × 104 J/m3), can be observed in the Ta/Pd/CFMS (2.3 nm)/MgO (1.3 nm)/Pd films annealed at 300 °C. In addition, it was found that the magnetic properties of Ta/Pd/CFMS/MgO/Pd films are sensitive to hydrogen (H2) under a weak magnetic field (< 30 Oe), whose residual magnetization (Mr) decreased from 123.15 to 30.75 emu/cm3 in the atmosphere with H2 concentration of 5%.

15.
Nanoscale Res Lett ; 12(1): 618, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236194

RESUMO

Low coercivity is the main disadvantage of RE-Fe-B permanent magnets containing highly abundant rare earths (RE: La, Ce) from the application point of view, even though they exhibit many cost and resource advantages. In this work, an industrial mixed rare earth alloy (RE100 = La30.6Ce50.2Pr6.4Nd12.8) with a high amount of the more abundant elements was adopted to fabricate RE-Fe-B permanent magnets by means of mechanical alloying accompanied by post-annealing. A synergetic effect towards enhancing the coercivity was observed after co-doping with Dy2O3 and Ca, with the coercivity increasing from 2.44 kOe to 11.43 kOe for co-dopant percentages of 7 wt.% Dy2O3 + 2.3 wt.% Ca. Through analysis of the phase constituents and microstructure, it was determined that part of the Dy atoms entered the matrix of RE2Fe14B phase to enhance the magnetocrystalline anisotropy; due to the reductive effect of Ca on Dy2O3, nanocrystals of Dy-rich RE2Fe14B were present throughout the matrix, which could increase the resistance to domain wall movement. These are the dominant factors behind the improvement of the coercivity of the RE-Fe-B magnets with highly abundant RE elements.

16.
ACS Nano ; 11(8): 8002-8009, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28657728

RESUMO

Epitaxial thin films of CoFe2O4 (CFO) have successfully been transferred from a SrTiO3 substrate onto a flexible polyimide substrate. By bending the flexible polyimide, different levels of uniaxial strain are continuously introduced into the CFO epitaxial thin films. Unlike traditional epitaxial strain induced by substrates, the strain from bending will not suffer from critical thickness limitation, crystalline quality variation, and substrate clamping, and more importantly, it provides a more intrinsic and reliable way to study strain-controlled behaviors in functional oxide systems. It is found that both the saturation magnetization and coercivity of the transferred films can be changed over the bending status and show a high accord with the movement of the curvature bending radius of the polyimide substrate. This reveals that the mechanical strain plays a critical role in tuning the magnetic properties of CFO thin films parallel and perpendicular to the film plane direction.

17.
Sci Rep ; 6: 38257, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905544

RESUMO

Although the solution deposition of YBa2Cu3O7-x (YBCO) superconducting films is cost effective and capable of large-scale production, further improvements in their superconductivity are necessary. In this study, a deep UV (DUV) irradiation technique combined with a low-fluorine solution process was developed to prepare YBCO films. An acrylic acidic group as the chelating agent was used in the precursor solution. The acrylic acidic group was highly sensitive to DUV light at 254 nm and significantly absorbed UV light. The coated gel films exposed to DUV light decomposed at 150 °C and copper aggregation was prevented. The UV irradiation promoted the removal of the carbon residue and other by-products in the films, increased the density and enhanced the crystallinity and superconductivity of the YBCO films. Using a solution with F/Ba = 2, YBCO films with thicknesses of 260 nm and enhanced critical current densities of nearly 8 MA/cm2 were produced on the LaAlO3 (LAO) substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA