Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Clin Cancer Res ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767620

RESUMO

PURPOSE: STAT3 is a key transcription factor that mediates cancer progression through phosphorylation or gain-of-function mutations. STAT3 activation in myeloid neoplasms (MNs) is primarily mediated through phosphorylation. STAT3 mutation has only rarely been reported in MNs. EXPERIMENTAL DESIGN: We assessed the clinicopathologic and molecular genetic features of 32 STAT3-mutated MNs. RESULTS: The frequency of STAT3 mutation in MNs was <0.5%. Twenty (62.5%) cases were classified as acute myeloid leukemia (AML), 7 (21.9%) as myelodysplastic syndrome (MDS), 5 (15.6%) as chronic myelomonocytic leukemia (CMML), but none as myeloproliferative neoplasms (MPN). STAT3 mutations occurred at initial diagnosis in 22 (88%) cases, or at relapse or upon leukemic transformation. Clonal hierarchy analysis revealed that STAT3 mutations represented the dominant clone in 30% of AML cases, but were subclonal in MDS and CMML. Most were missense mutations located at the SH2 domain, Y640F being the most common. STAT3 mutation was accompanied by co-existing mutations in all cases, most frequently SRSF2, TET2, ASXL1, and SETBP1. STAT3 mutations were usually associated with morphologic dysplasia, increased blasts, and monosomy 7/del7q. With a median follow-up of 24.5 months, 21 patients died, 6 had persistent disease, and 5 achieved complete remission after stem cell transplantation. CONCLUSIONS: STAT3 mutation is present in various MNs, but not in MPN. It is often an early event or occurs upon leukemic transformation, suggesting an important role in the pathogenesis and progression of MNs by activating JAK-STAT pathway. It may help identify a subset of patients with MNs who may benefit from targeted therapy.

4.
Cancer Discov ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552003

RESUMO

Resistance to poly (ADP-ribose) polymerase inhibitors (PARPi) limits the therapeutic efficacy of PARP inhibition in treating breast cancer susceptibility gene 1 (BRCA1)-deficient cancers. Here we reveal that BRCA1 has a dual role in regulating ferroptosis. BRCA1 promotes the transcription of voltage-dependent anion channel 3 (VDAC3) and glutathione peroxidase 4 (GPX4); consequently, BRCA1 deficiency promotes cellular resistance to erastin-induced ferroptosis but sensitizes cancer cells to ferroptosis induced by GPX4 inhibitors (GPX4i). In addition, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and defective GPX4 induction unleash potent ferroptosis in BRCA1-deficient cancer cells upon PARPi and GPX4i co-treatment. Finally, we show that xenograft tumors derived from BRCA1-mutant breast cancer patients with PARPi resistance exhibit decreased GPX4 expression and high sensitivity to PARP and GPX4 co-inhibition. Our results show that BRCA1 deficiency induces a ferroptosis vulnerability to PARP and GPX4 co-inhibition and inform a therapeutic strategy for overcoming PARPi resistance in BRCA1-deficient cancers.

5.
Hum Pathol ; 144: 71-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301962

RESUMO

Optical genome mapping (OGM) is a new DNA-based technology which provides comprehensive examination of the entire genome. We report two patients who presented with splenomegaly and leukocytosis with lymphocytosis including villous lymphocytes. Neither patient had lymphadenopathy. Bone marrow evaluation showed involvement by small B-cell lymphoma in a sinusoidal and interstitial distribution, and immunophenotypic analysis showed that the neoplastic cells were positive for B-cell markers and cyclin D1 but were negative for SOX11 and CD5. Initially, the clinicopathologic features in both patients were thought to be suspicious for hairy cell leukemia variant or splenic marginal zone lymphoma. However, OGM detected CCND1 rearrangement: t(2;11)/IGK::CCND1 in one case and t(11;14)/IGH::CCND1 in the other case. These cases illustrate the valuable role OGM can play in establishing the diagnosis of MCL. Case 1 also contributes to the paucity of literature on the rare occurrence of IGK::CCND1 in MCL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma de Células B , Linfoma de Célula do Manto , Adulto , Humanos , Linfoma de Célula do Manto/patologia , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos/patologia , Genômica , Ciclina D1/genética
6.
EJHaem ; 5(1): 157-161, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38406521

RESUMO

The simultaneous detection of BCR::ABL1 and JAK2 V617F was rarely reported and their clonal relationship and dynamic clonal shift were not characterized. Here, we described a unique case with the initial presentation as JAK2 V617F+ primary myelofibrosis, followed by the emergence of BCR::ABL1+ chronic myeloid leukemia. The patient then developed BCR::ABL1+ B-lymphoblastic leukemia. Treatment for B-lymphoblastic leukemia prompted a regression to the state of primary myelofibrosis. In light of these observations, we proposed a clonal evolution model for this case.

7.
Mod Pathol ; 37(2): 100405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104893

RESUMO

Large or blastoid B-cell neoplasms that are SOX11+ are a diagnostic dilemma and raise a differential diagnosis of cyclin D1-negative blastoid/pleomorphic mantle cell lymphoma (MCL) versus diffuse large B-cell lymphoma (DLBCL) or blastoid high-grade B-cell lymphoma (HGBL) with aberrant SOX11 expression. Here we report a study cohort of 13 SOX11+ large/blastoid B-cell neoplasms. Fluorescence in situ hybridization analysis was negative for CCND1 rearrangement in all 13 cases; 1 of 8 (12.5%) cases tested showed CCND2 rearrangement and 2 (25%) cases had extracopies of CCND2. Gene expression profiling showed that the study group had a gene expression signature similar to cyclin D1+ blastoid/pleomorphic MCL but different from DLBCL. Principal component analysis revealed that the cohort cases overlapped with cyclin D1+ blastoid/pleomorphic MCL but had minimal overlap with DLBCL. All patients in the cohort had clinicopathologic features similar to those reported for patients with cyclin D1+ MCL. We also performed a survey of SOX11 expression in a group of 85 cases of DLBCL and 24 cases of blastoid HGBL. SOX11 expression showed a 100% specificity and positive predictive value for the diagnosis of MCL. Overall, the results support the conclusion that large or blastoid B-cell neoplasms that are positive for SOX11 are best classified as cyclin D1-negative blastoid/pleomorphic MCL, and not as DLBCL or blastoid HGBL. We also conclude that SOX11 is a specific marker for the diagnosis of MCL, including cyclin D1-negative blastoid/pleomorphic MCL cases and should be performed routinely on blastoid/large B-cell neoplasms to help identify potential cases of cyclin D1-negative blastoid/pleomorphic MCL.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma de Célula do Manto , Adulto , Humanos , Linfoma de Célula do Manto/metabolismo , Ciclina D1/genética , Hibridização in Situ Fluorescente , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/patologia , Fatores de Transcrição SOXC/genética
8.
Nat Aging ; 3(11): 1387-1400, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884767

RESUMO

DNA methylation deregulation at partially methylated domains (PMDs) represents an epigenetic signature of aging and cancer, yet the underlying molecular basis and resulting biological consequences remain unresolved. We report herein a mechanistic link between disrupted DNA methylation at PMDs and the spatial relocalization of H3K9me3-marked heterochromatin in aged hematopoietic stem and progenitor cells (HSPCs) or those with impaired DNA methylation. We uncover that TET2 modulates the spatial redistribution of H3K9me3-marked heterochromatin to mediate the upregulation of endogenous retroviruses (ERVs) and interferon-stimulated genes (ISGs), hence contributing to functional decline of aged HSPCs. TET2-deficient HSPCs retain perinuclear distribution of heterochromatin and exhibit age-related clonal expansion. Reverse transcriptase inhibitors suppress ERVs and ISGs expression, thereby restoring age-related defects in aged HSPCs. Collectively, our findings deepen the understanding of the functional interplay between DNA methylation and histone modifications, which is vital for maintaining heterochromatin function and safeguarding genome stability in stem cells.


Assuntos
Células-Tronco Hematopoéticas , Heterocromatina , Heterocromatina/genética , Células-Tronco Hematopoéticas/metabolismo , Metilação de DNA/genética
9.
Oncology ; 101(12): 822-835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37598665

RESUMO

BACKGROUND: The effect of autologous hematopoietic stem cell transplantation (auto-HSCT) versus conventional chemotherapy or allogeneic hematopoietic stem cell transplantation (allo-HSCT) on the survival of patients with advanced follicular lymphoma (FL) is uncertain. OBJECTIVES: To elucidate this, FL and HSCT were used as keywords to search in PubMed, Embase, Web of Science, and Cochrane Library databases. METHOD: After data extraction and quality evaluation, a total of 13 studies were included, seven of which compared auto-HSCT with conventional chemotherapy and the other six compared allo-HSCT with auto-HSCT to the survival of FL patients. RESULTS: The results showed that auto-HSCT improved overall survival (OS), progression-free survival, and event-free survival of FL patients compared with conventional chemotherapy without auto-HSCT. Compared with allo-HSCT, the patients receiving auto-HSCT had longer OS and lower non-recurrent mortality. CONCLUSIONS: Auto-HSCT can provide a survival advantage for patients with FL compared with conventional chemotherapy and allo-HSCT did not result in a survival benefit.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Folicular , Humanos , Transplante Homólogo/métodos , Linfoma Folicular/terapia , Transplante Autólogo , Transplante de Células-Tronco Hematopoéticas/métodos , Estudos Retrospectivos
12.
Cancer Med ; 12(13): 14293-14304, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212518

RESUMO

BACKGROUND: Mutations in the RAS-MAPK pathway, such as KRAS, NRAS, and BRAF, are known as high-risk factors associated with poor prognosis in patients with various cancers, but studies in myeloma have yielded mixed results. METHODS: We describe the clinicopathologic, cytogenetic, molecular features, and outcomes of 68 patients with RAS/BRAF-mutated myeloma, and compare with 79 patients without any mutations. RESULTS: We show that KRAS, NRAS, and BRAF were mutated in 16%, 11%, and 5% of cases, respectively. RAS/BRAF-mutated patients had lower hemoglobin and platelet counts, higher levels of serum lactate dehydrogenase and calcium, higher percentage of bone marrow plasma cells, and more advanced R-ISS stage. RAS/BRAF mutations were associated with complex karyotype and gain/amplification of CKS1B. The median overall survival and progression-free survival were significantly shorter for RAS/BRAF-mutated patients (69.0 vs. 220.7 months, p = 0.0023 and 46.0 vs. 60.6 months, p = 0.0311, respectively). Univariate analysis revealed that KRAS mutation, NRAS mutation, lower hemoglobin, elevated lactate dehydrogenase, higher R-ISS stage, complex karyotype, gain/amplification of CKS1B, monosomy 13/RB1 deletion and lack of autologous stem cell transplantation were associated with poorer prognosis. Multivariate analysis showed that KRAS mutation, lower hemoglobin level, higher level of serum calcium, higher ISS stage, and lack of autologous stem cell transplantation predict inferior outcome. CONCLUSIONS: RAS/BRAF mutations occur in 30%-40% of myeloma cases and are associated with higher tumor burden, higher R-ISS stage, complex karyotype, and shorter overall survival and progression-free survival. These findings support testing for RAS/BRAF mutations in myeloma patients and underscore the potential therapeutic benefits of RAS/BRAF inhibitors.


Assuntos
Neoplasias Colorretais , Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Cálcio/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Prognóstico , Transplante Autólogo , Mutação , Lactato Desidrogenases/genética , Lactato Desidrogenases/metabolismo , Cariótipo , Neoplasias Colorretais/patologia
13.
Blood Adv ; 7(13): 2972-2982, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-36799929

RESUMO

Acute myeloid leukemia (AML) with retinoic acid receptor γ (RARG) rearrangement has clinical, morphologic, and immunophenotypic features similar to classic acute promyelocytic leukemia. However, AML with RARG rearrangement is insensitive to alltrans retinoic acid (ATRA) and arsenic trioxide (ATO) and carries a poor prognosis. We initiated a global cooperative study to define the clinicopathological features, genomic and transcriptomic landscape, and outcomes of AML with RARG rearrangements collected from 29 study groups/institutions worldwide. Thirty-four patients with AML with RARG rearrangements were identified. Bleeding or ecchymosis was present in 18 (54.5%) patients. Morphology diagnosed as M3 and M3v accounted for 73.5% and 26.5% of the cases, respectively. Immunophenotyping showed the following characteristics: positive for CD33, CD13, and MPO but negative for CD38, CD11b, CD34, and HLA-DR. Cytogenetics showed normal karyotype in 38% and t(11;12) in 26% of patients. The partner genes of RARG were diverse and included CPSF6, NUP98, HNRNPc, HNRNPm, PML, and NPM1. WT1- and NRAS/KRAS-mutations were common comutations. None of the 34 patients responded to ATRA and/or ATO. Death within 45 days from diagnosis occurred in 10 patients (∼29%). At the last follow-up, 23 patients had died, and the estimated 2-year cumulative incidence of relapse, event-free survival, and overall survival were 68.7%, 26.7%, and 33.5%, respectively. Unsupervised hierarchical clustering using RNA sequencing data from 201 patients with AML showed that 81.8% of the RARG fusion samples clustered together, suggesting a new molecular subtype. RARG rearrangement is a novel entity of AML that confers a poor prognosis. This study is registered with the Chinese Clinical Trial Registry (ChiCTR2200055810).


Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Promielocítica Aguda/genética , Tretinoína , Antígenos HLA-DR , Trióxido de Arsênio
14.
Cancers (Basel) ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672407

RESUMO

MECOM rearrangement (MECOM-R) resulting from 3q26.2 aberrations is often associated with myeloid neoplasms and inferior prognosis in affected patients. Uncommonly, certain 3q26.2/MECOM-R can be subtle/cryptic and consequently overlooked by karyotyping. We identified 17 acute myeloid leukemia (AML) patients (male/female: 13/4 with a median age of 67 years, range 42 to 85 years) with a pericentric inv(3) leading to MECOM-R, with breakpoints at 3p23 (n = 11), 3p25 (n = 3), 3p21 (n = 2) and 3p13 (n = 1) on 3p and 3q26.2 on 3q. These pericentric inv(3)s were overlooked by karyotyping initially in 16 of 17 cases and later detected by metaphase FISH analysis. Similar to the patients with classic/paracentric inv(3)(q21q26.2), patients with pericentric inv(3) exhibited frequent cytopenia, morphological dysplasia (especially megakaryocytes), -7/del(7q), frequent NRAS (n = 6), RUNX1 (n = 5) and FLT-3 (n = 4) mutations and dismal outcomes (median overall survival: 14 months). However, patients with pericentric inv(3) more frequently had AML with thrombocytopenia (n = 15, 88%), relative monocytosis in peripheral blood (n = 15, 88%), decreased megakaryocytes (n = 11, 65%), and lower SF3B1 mutation. We conclude that AML with pericentric inv(3) shares some similarities with AML associated with classic/paracentric inv(3)/GATA2::MECOM but also shows certain unique features. Pericentric inv(3)s are often subtle/cryptic by chromosomal analysis. A reflex FISH analysis for MECOM-R is recommended in myeloid neoplasms showing -7/del(7q).

15.
Cancer ; 129(6): 878-889, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36583229

RESUMO

BACKGROUND: ETNK1 mutation has been suggested as a useful tool to support the diagnosis of atypical chronic myeloid leukemia. ETNK1 mutations, however, occur in other myeloid neoplasms. METHODS: The authors assessed the clinicopathologic and molecular genetic features of 80 ETNK1-mutated myeloid neoplasms. RESULTS: Thirty-seven neoplasms (46%) were classified as myelodysplastic syndrome, 17 (21%) were classified as myelodysplastic/myeloproliferative neoplasm, 14 (18%) were classified as acute myeloid leukemia, and 12 (15%) were classified as myeloproliferative neoplasm. ETNK1 mutations were detected at the first test in 96% of patients, suggesting that ETNK1 mutation is an early event in pathogenesis. ETNK1 mutations represented the dominant clone in 63% of patients and was persistently dominant in 93%. The variant allele frequencies were usually higher in acute myeloid leukemia and increased upon leukemic transformation. ETNK1 mutation was accompanied by coexisting mutations in all patients, with ASXL1 (50%), TET2 (25%), EZH2 (24%), RUNX1 (24%), and SRSF2 (24%) mutations being the most common. Neoplasms with ETNK1 mutations were associated with morphologic dysplasia, increased blasts, myelofibrosis, and noncomplex karyotypes. With a median follow-up of 16.5 months, 30 patients died, 44 had persistent disease, and four achieved complete remission after stem cell transplantation. CONCLUSIONS: ETNK1 mutation is present in various myeloid neoplasms, often as an early event and a dominant clone and always with concurrent mutations. It may play an important role in the pathogenesis and progression of myeloid neoplasms by causing DNA damage and inducing other mutations and genomic instability, and it may serve as a potential therapeutic target. ETNK1 mutation is not disease-specific and should be interpreted with caution to classify myeloid neoplasms.


Assuntos
Leucemia Mieloide Aguda , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/genética , Transtornos Mieloproliferativos/genética , Mutação , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/genética
16.
Cancer ; 129(1): 49-59, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36281717

RESUMO

BACKGROUND: Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a distinct subtype of T-ALL with a unique immunophenotype and high treatment failure rate. The molecular genetic abnormalities and their prognostic impact in ETP-ALL patients are poorly understood. METHODS: The authors performed systematic analyses of the clinicopathologic features with an emphasis on molecular genetic aspects of 32 patients with ETP-ALL. RESULTS: The median age was 43 years (range, 16-71). The blasts were positive for cytoplasmic CD3 and CD7 and negative for CD1a and CD8. Other markers expressed included CD34 (88%), CD33 (72%), CD117 (68%), CD13 (58%), CD5 (partial, 56%), CD2 (38%), CD10 (25%), CD56 (partial, 19%), and CD4 (6%). Cytogenetic analyses revealed a diploid karyotype in 10 patients, simple (1-2) abnormalities in 10 patients, and complex karyotype in 10 patients. Next-generation sequencing for 21 patients demonstrated that all had gene mutations (median, four mutations per patient). The most frequently mutated genes were WT1 (38%), NOTCH1 (29%), NRAS (29%), PHF6 (25%), TP53 (24%), ASXL1 (19%), FLT3 (19%), and IKZF1 (19%). All patients except one received multi-agent chemotherapy, and 22 patients underwent allogeneic stem cell transplantation. Thrombocytopenia, an abnormal karyotype, and TP53 mutation were associated with markedly shortened overall survival. Stem cell transplantation significantly improved overall survival. CONCLUSIONS: Patients with ETP-ALL often have high mutation burden with increased genomic instability. TP53 mutation was the only molecular prognostic marker and was associated with complex karyotype and greater than or equal to five mutations. These patients may benefit from stem cell transplantation, and recurrent gene mutations may be novel therapeutic markers.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Imunofenotipagem , Prognóstico
17.
Cancer Discov ; 13(1): 170-193, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36222845

RESUMO

Mutations in IDH genes occur frequently in acute myeloid leukemia (AML) and other human cancers to generate the oncometabolite R-2HG. Allosteric inhibition of mutant IDH suppresses R-2HG production in a subset of patients with AML; however, acquired resistance emerges as a new challenge, and the underlying mechanisms remain incompletely understood. Here we establish isogenic leukemia cells containing common IDH oncogenic mutations by CRISPR base editing. By mutational scanning of IDH single amino acid variants in base-edited cells, we describe a repertoire of IDH second-site mutations responsible for therapy resistance through disabling uncompetitive enzyme inhibition. Recurrent mutations at NADPH binding sites within IDH heterodimers act in cis or trans to prevent the formation of stable enzyme-inhibitor complexes, restore R-2HG production in the presence of inhibitors, and drive therapy resistance in IDH-mutant AML cells and patients. We therefore uncover a new class of pathogenic mutations and mechanisms for acquired resistance to targeted cancer therapies. SIGNIFICANCE: Comprehensive scanning of IDH single amino acid variants in base-edited leukemia cells uncovers recurrent mutations conferring resistance to IDH inhibition through disabling NADPH-dependent uncompetitive inhibition. Together with targeted sequencing, structural, and functional studies, we identify a new class of pathogenic mutations and mechanisms for acquired resistance to IDH-targeting cancer therapies. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Leucemia Mieloide Aguda , Humanos , NADP , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Aminoácidos/genética , Isocitrato Desidrogenase
18.
Br J Haematol ; 200(4): 476-488, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36345807

RESUMO

Bone marrow mesenchymal stromal cells (BM-MSCs) are implicated in the pathogenesis of acute myeloid leukaemia (AML). However, due to the high heterogeneity of AML the mechanism underlying the cross-talk between MSCs and leukaemia cells is not well understood. We found that mixed-lineage leukaemia-AF9 (MLL-AF9)-induced AML mice-derived MSCs had higher proliferative viability compared to wild-type mice-derived MSCs with ubiquitin-conjugating enzyme E2O (Ube2o) down-regulation. After overexpression of UBE2O in AML-derived MSCs, the growth capacity of MSCs was reduced with nuclear factor kappa B subunit 1 (NF-κB) pathway deactivation. In vitro co-culture assay revealed that UBE2O-overexpression MSCs suppressed the proliferation and promoted apoptosis of AML cells by direct contact. In vivo results revealed that the leukaemia burden was reduced and the overall survival of AML mice was prolonged, with decreased dissemination of leukaemia cells in BM, spleen, liver and peripheral blood. Additionally, subcutaneous tumorigenesis revealed that tumour growth was also suppressed in the UBE2O-overexpression MSCs group. In conclusion, UBE2O was expressed at a low level in MLL-AF9-induced AML mice-derived MSCs. Overexpression of UBE2O in MSCs suppressed their proliferation through NF-κB pathway deactivation, which resulted in AML suppression. Our study provides a theoretical basis for a BM microenvironment-based therapeutic strategy to control disease progression.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Enzimas de Conjugação de Ubiquitina , Animais , Camundongos , Medula Óssea/patologia , Células da Medula Óssea/patologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Microambiente Tumoral , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
19.
Cell Death Dis ; 13(11): 922, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333298

RESUMO

The development of acute lymphoblastic leuakemia (ALL) is partly attributed to the effects of bone marrow (BM) microenvironment, especially mesenchymal stromal cells (MSCs), which interact bilaterally with leukaemia cells, leading to ALL progression. In order to find MSCs-based microenvironment targeted therapeutic strategies, Notch1-induced T-cell ALL (T-ALL) mice models were used and dynamic alterations of BM-MSCs with increased cell viability during T-ALL development was observed. In T-ALL mice derived stroma-based condition, leukaemia cells showed significantly elevated growth capacity indicating that MSCs participated in leukaemic niche formation. RNA sequence results revealed that T-ALL derived MSCs secreted fibroblast growth factor 2 (FGF2), which combined with fibroblast growth factor receptor 2 (FGFR2) on leukaemia cells, resulting in activation of PI3K/AKT/mTOR signalling pathway in leukaemia cells. In vitro blocking the interaction between FGF2 and FGFR2 with BGJ398 (infigratinib), a FGFR1-3 kinase inhibitor, or knockdown FGF2 in MSCs by interference caused deactivation of PI3K/AKT/mTOR pathway and dysregulations of genes associated with cell cycle and apoptosis in ALL cells, leading to decrease of leukaemia cells. In mouse model received BGJ398, overall survival was extended and dissemination of leukaemia cells in BM, spleen, liver and peripheral blood was decreased. After subcutaneous injection of primary human T-ALL cells with MSCs, tumour growth was suppressed when FGF2/FGFR2 was interrupted. Thus, inhibition of FGF2/FGFR2 interaction appears to be a valid strategy to overcome BM-MSCs mediated progression of T-ALL, and BGJ398 could indeed improve outcomes in T-ALL, which provide theoretical basis of BGJ398 as a BM microenvironment based therapeutic strategy to control disease progression.


Assuntos
Células-Tronco Mesenquimais , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
20.
Am J Cancer Res ; 12(10): 4666-4679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381323

RESUMO

FOXM1 is a transcription factor that controls cell cycle regulation, cell proliferation, and differentiation. Overexpression of FOXM1 has been implicated in various cancer types. However, the activation status and functional significance of FOXM1 in diffuse large B cell lymphoma (DLBCL) have not been well investigated. Using proteomic approaches, we discovered that the protein expression levels of FOXM1 and PLK1 were positively correlated in DLBCL cell lines and primary DLBCL. Expression levels of FOXM1 and PLK1 mRNAs were also significantly higher in DLBCL than in normal human B cells and could predict poor prognosis of DLBCL, particularly in patients with germinal center B cell-like (GCB) DLBCL. Furthermore, proteomic studies defined a FOXM1-PLK1 signature that consisted of proteins upstream and downstream of that axis involved in the p38-MAPK-AKT pathway, cell cycle, and DNA damage/repair. Further studies demonstrated a mechanistic function of the FOXM1/PLK1 axis in connection with the DNA damage response pathways regulating the S/G2 checkpoint of the cell cycle. Therapeutic targeting of FOXM1/PLK1 using a FOXM1 or PLK1 inhibitor, as well as other clinically relevant small-molecule inhibitors targeting ATR-CHK1, was highly effective in DLBCL in vitro models. These findings are instrumental for lymphoma drug discovery aiming at the FOXM1/PLK1/ATR/CHK1 axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA