Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Breed ; 44(2): 15, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362529

RESUMO

Yield and quality are two crucial breeding objects of wheat therein grain weight and grain protein content (GPC) are two key relevant factors correspondingly. Investigations of their genetic mechanisms represent special significance for breeding. In this study, 199 F2 plants and corresponding F2:3 families derived from Nongda3753 (ND3753) and its EMS-generated mutant 564 (M564) were used to investigate the genetic basis of larger grain and higher GPC of M564. QTL analysis identified a total of 33 environmentally stable QTLs related to thousand grain weight (TGW), grain area (GA), grain circle (GC), grain length (GL), grain width (GW), and GPC on chromosomes 1B, 2A, 2B, 4D, 6B, and 7D, respectively, among which QGw.cau-6B.1, QTgw.cau-6B.1, QGa.cau-6B.1, and QGc.cau-6B.1 shared overlap confidence interval on chromosome 6B. This interval contained the TaGW2 gene playing the same role as the QTLs, so TaGW2-6B was cloned and sequenced. Sequence alignment revealed two G/A SNPs between two parents, among which the SNP in the seventh exon led to a premature termination in M564. A KASP marker was developed based on the SNP, and single-marker analysis on biparental populations showed that the mutant allele could significantly increase GW and TGW, but had no effect on GPC. Distribution detection of the mutant allele through KASP marker genotyping and sequence alignment against databases ascertained that no materials harbored this allele within natural populations. This allele was subsequently introduced into three different varieties through molecular marker-assisted backcrossing, and it was revealed that the allele had a significant effect on simultaneously increasing GW, TGW, and even GPC in all of three backgrounds. Summing up the above, it could be concluded that a novel elite allele of TaGW2-6B was artificially created and might play an important role in wheat breeding for high yield and quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01455-y.

3.
ISA Trans ; 141: 84-92, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451919

RESUMO

While threats from outsiders are easier to alleviate, effective ways seldom exist to handle threats from insiders. The key to managing insider threats lies in engineering behavioral features efficiently and classifying them correctly. To handle challenges in feature engineering, we propose an integrated feature engineering solution based on daily activities, combining manually-selected features and automatically-extracted features together. Particularly, an LSTM auto-encoder is introduced for automatic feature engineering from sequential activities. To improve detection, a residual hybrid network (ResHybnet) containing GNN and CNN components is also proposed along with an organizational graph, taking a user-day combination as a node. Experimental results show that the proposed LSTM auto-encoder could extract hidden patterns from sequential activities efficiently, improving F1 score by 0.56%. Additionally, with the designed residual link, our ResHybnet model works well to boost performance and has outperformed the best of other models by 1.97% on the same features. We published our code on GitHub: https://github.com/Wayne-on-the-road/ResHybnet.

4.
Sci China Life Sci ; 66(7): 1647-1664, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802319

RESUMO

Grain development is a crucial determinant of yield and quality in bread wheat (Triticum aestivum L.). However, the regulatory mechanisms underlying wheat grain development remain elusive. Here we report how TaMADS29 interacts with TaNF-YB1 to synergistically regulate early grain development in bread wheat. The tamads29 mutants generated by CRISPR/Cas9 exhibited severe grain filling deficiency, coupled with excessive accumulation of reactive oxygen species (ROS) and abnormal programmed cell death that occurred in early developing grains, while overexpression of TaMADS29 increased grain width and 1,000-kernel weight. Further analysis revealed that TaMADS29 interacted directly with TaNF-YB1; null mutation in TaNF-YB1 caused grain developmental deficiency similar to tamads29 mutants. The regulatory complex composed of TaMADS29 and TaNF-YB1 exercises its possible function that inhibits the excessive accumulation of ROS by regulating the genes involved in chloroplast development and photosynthesis in early developing wheat grains and prevents nucellar projection degradation and endosperm cell death, facilitating transportation of nutrients into the endosperm and wholly filling of developing grains. Collectively, our work not only discloses the molecular mechanism of MADS-box and NF-Y TFs in facilitating bread wheat grain development, but also indicates that caryopsis chloroplast might be a central regulator of grain development rather than merely a photosynthesis organelle. More importantly, our work offers an innovative way to breed high-yield wheat cultivars by controlling the ROS level in developing grains.


Assuntos
Pão , Triticum , Espécies Reativas de Oxigênio/metabolismo , Melhoramento Vegetal , Grão Comestível/metabolismo
5.
J Exp Bot ; 73(19): 6600-6614, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35781562

RESUMO

Heat stress substantially reduces the yield potential of wheat (Triticum aestivum L.), one of the most widely cultivated staple crops, and greatly threatens global food security in the context of global warming. However, few studies have explored the heat stress tolerance (HST)-related genetic resources in wheat. Here, we identified and fine-mapped a wheat HST locus, TaHST2, which is indispensable for HST in both the vegetative and reproductive stages of the wheat life cycle. The studied pair of near isogenic lines (NILs) exhibited diverse morphologies under heat stress, based on which we mapped TaHST2 to a 485 kb interval on chromosome arm 4DS. Under heat stress, TaHST2 confers a superior conversion rate from soluble sugars to starch in wheat grains, resulting in faster grain filling and a higher yield potential. A further exploration of genetic resources indicated that TaHST2 underwent strong artificial selection during wheat domestication, suggesting it is an essential locus for basal HST in wheat. Our findings provide deeper insights into the genetic basis of wheat HST and might be useful for global efforts to breed heat-stress-tolerant cultivars.


Assuntos
Termotolerância , Triticum , Triticum/genética , Melhoramento Vegetal , Resposta ao Choque Térmico/genética , Termotolerância/genética , Grão Comestível/genética
6.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628114

RESUMO

WRINKLED1 (WRI1), an APETALA2 (AP2) transcription factor (TF), critically regulates the processes related to fatty acid synthesis, storage oil accumulation, and seed development in plants. However, the WRI1 genes remain unknown in allohexaploid bread wheat (Triticum aestivum L.). In this study, based on the sequence of Arabidopsis AtWRI1, two TaWRI1Ls genes of bread wheat, TaWRI1L1 and TaWRI1L2, were cloned. TaWRI1L2 was closely related to monocotyledons and clustered in one subgroup with AtWRI1, while TaWRI1L1 was clustered in another subgroup with AtWRI3 and AtWRI4. Both were expressed highly in the developmental grain, subcellular localized in the nucleus, and showed transcriptional activation activity. TaWRI1L2, rather than TaWRI1L1, promoted oil body accumulation and significantly increased triglyceride (TAG) content in tobacco leaves. Overexpression of TaWRI1L2 compensated for the functional loss of AtWRI1 in an Arabidopsis mutant and restored the wild-type phenotypes of seed shape, generation, and fatty acid synthesis and accumulation. Knockout of TaWRI1L2 reduced grain size, 1000 grain weight, and grain fatty acid synthesis in bread wheat. Conclusively, TaWRI1L2, rather than TaWRI1L1, was the key transcriptional factor in the regulation of grain fatty acid synthesis in bread wheat. This study lays a foundation for gene regulation and genetic manipulation of fatty acid synthesis in wheat genetic breeding programs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pão , Clonagem Molecular , Grão Comestível/genética , Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
7.
Front Plant Sci ; 13: 835306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310636

RESUMO

Bread wheat is a highly adaptable food crop grown extensively around the world and its quality genetic improvement has received wide attention. In this study, the genetic loci associated with five quality traits including protein content (PC), gluten content (GC), baking value (BV), grain hardness (HA), and sedimentation value (SV) in a population of 253 Chinese wheat grown in Inner Mongolia were investigated through genome wide association mapping. A total of 103 QTL containing 556 SNPs were significantly related to the five quality traits based on the phenotypic data collected from three environments and BLUP data. Of these QTL, 32 QTL were continuously detected under at least two experiments. Some QTL such as qBV3D.2/qHA3D.2 on 3D, qPC5A.3/qGC5A on 5A, qBV5D/qHA5D on 5D, qBV6B.2/qHA6B.3 on 6B, and qBV6D/qHA6D.1 on 6D were associated with multiple traits. In addition, distribution of favorable alleles of the stable QTL in the association panel and their effects on five quality traits were validated. Analysis of existing transcriptome data revealed that 34 genes were specifically highly expressed in grains during reproductive growth stages. The functions of these genes will be characterized in future experiments. This study provides novel insights into the genetic basis of quality traits in wheat.

8.
Plant Physiol ; 188(4): 1950-1965, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35088857

RESUMO

Accurate germplasm characterization is a vital step for accelerating crop genetic improvement, which remains largely infeasible for crops such as bread wheat (Triticum aestivum L.), which has a complex genome that undergoes frequent introgression and contains many structural variations. Here, we propose a genomic strategy called ggComp, which integrates resequencing data with copy number variations and stratified single-nucleotide polymorphism densities to enable unsupervised identification of pairwise germplasm resource-based Identity-By-Descent (gIBD) blocks. The reliability of ggComp was verified in wheat cultivar Nongda5181 by dissecting parental-descent patterns represented by inherited genomic blocks. With gIBD blocks identified among 212 wheat accessions, we constructed a multi-scale genomic-based germplasm network. At the whole-genome level, the network helps to clarify pedigree relationship, demonstrate genetic flow, and identify key founder lines. At the chromosome level, we were able to trace the utilization of 1RS introgression in modern wheat breeding by hitchhiked segments. At the single block scale, the dissected germplasm-based haplotypes nicely matched with previously identified alleles of "Green Revolution" genes and can guide allele mining and dissect the trajectory of beneficial alleles in wheat breeding. Our work presents a model-based framework for precisely evaluating germplasm resources with genomic data. A database, WheatCompDB (http://wheat.cau.edu.cn/WheatCompDB/), is available for researchers to exploit the identified gIBDs with a multi-scale network.


Assuntos
Melhoramento Vegetal , Triticum , Pão , Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Triticum/genética
9.
Front Plant Sci ; 12: 747775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950162

RESUMO

Sodium dodecyl sulfate-sedimentation volume is an important index to evaluate the gluten strength of common wheat and is closely related to baking quality. In this study, a total of 15 quantitative trait locus (QTL) for sodium dodecyl sulfate (SDS)-sedimentation volume (SSV) were identified by using a high-density genetic map including 2,474 single-nucleotide polymorphism (SNP) markers, which was constructed with a doubled haploid (DH) population derived from the cross between Non-gda3753 (ND3753) and Liangxing99 (LX99). Importantly, four environmentally stable QTLs were detected on chromosomes 1A, 2D, and 5D, respectively. Among them, the one with the largest effect was identified on chromosome 1A (designated as QSsv.cau-1A.1) explaining up to 39.67% of the phenotypic variance. Subsequently, QSsv.cau-1A.1 was dissected into two QTLs named as QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2 by saturating the genetic linkage map of the chromosome 1A. Interestedly, favorable alleles of these two loci were from different parents. Due to the favorable allele of QSsv.cau-1A.1.1 was from the high-value parents ND3753 and revealed higher genetic effect, which explained 25.07% of the phenotypic variation, mapping of this locus was conducted by using BC3F1 and BC3F2 populations. By comparing the CS reference sequence, the physical interval of QSsv.cau-1A.1.1 was delimited into 14.9 Mb, with 89 putative high-confidence annotated genes. SSVs of different recombinants between QSsv.cau-1A.1.1 and QSsv.cau-1A.1 detected from DH and BC3F2 populations showed that these two loci had an obvious additive effect, of which the combination of two favorable loci had the high SSV, whereas recombinants with unfavorable loci had the lowest. These results provide further insight into the genetic basis of SSV and QSsv.cau-1A.1.1 will be an ideal target for positional cloning and wheat breeding programs.

10.
Theor Appl Genet ; 134(3): 835-847, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33404673

RESUMO

KEY MESSAGE: A novel wax locus GLOSSY1 was finely mapped to an approximately 308.1-kbp genomic interval on chromosome 2DS of wheat. The epicuticular wax, the outermost layer of aerial organs, gives plants their bluish-white (glaucous) appearance. Epicuticular wax is ubiquitous and provides an essential protective function against environmental stresses. In this study, we identified the glossy1 mutant on the basis of its glossy glume from an EMS population in the elite wheat (Triticum aestivum L.) cultivar Jimai22. The mutant had a dramatically different profile in total wax load and composition of individual wax constituents relative to the wild type, resulting in the increased cuticle permeability of glumes. The glossy glume phenotype was controlled by a single, semidominant locus mapping to the short arm of chromosome 2D, within a 308.1-kbp genomic interval that contained ten annotated protein-coding genes. These results pave the way for an in-depth analysis of the underlying genetic basis of wax formation patterns and enrich our understanding of mechanisms regulating wax metabolism.


Assuntos
Oxirredutases do Álcool/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/genética , Triticum/genética , Ligação Genética , Marcadores Genéticos , Fenótipo
11.
Front Plant Sci ; 12: 799520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087558

RESUMO

Wheat yield is not only affected by three components of yield, but also affected by plant height (PH). Identification and utilization of the quantitative trait loci (QTL) controlling these four traits is vitally important for breeding high-yielding wheat varieties. In this work, we conducted a QTL analysis using the recombinant inbred lines (RILs) derived from a cross between two winter wheat varieties of China, "Nongda981" (ND981) and "Nongda3097" (ND3097), exhibiting significant differences in spike number per unit area (SN), grain number per spike (GNS), thousand grain weight (TGW), and PH. A total of 11 environmentally stable QTL for these four traits were detected. Among them, four major and stable QTLs (QSn.cau-4B-1.1, QGns.cau-4B-1, QTgw.cau-4B-1.1, and QPh.cau-4B-1.2) explaining the highest phenotypic variance for SN, GNS, TGW, and PH, respectively, were mapped on the same genomic region of chromosome 4B and were considered a QTL cluster. The QTL cluster spanned a genetic distance of about 12.3 cM, corresponding to a physical distance of about 8.7 Mb. Then, the residual heterozygous line (RHL) was used for fine mapping of the QTL cluster. Finally, QSn.cau-4B-1.1, QGns.cau-4B-1, and QPh.cau-4B-1.2 were colocated to the physical interval of about 1.4 Mb containing 31 annotated high confidence genes. QTgw.cau-4B-1.1 was divided into two linked QTL with opposite effects. The elite NILs of the QTL cluster increased SN and PH by 55.71-74.82% and 14.73-23.54%, respectively, and increased GNS and TGW by 29.72-37.26% and 5.81-11.24% in two environments. Collectively, the QTL cluster for SN, GNS, TGW, and PH provides a theoretical basis for improving wheat yield, and the fine-mapping result will be beneficial for marker-assisted selection and candidate genes cloning.

12.
Theor Appl Genet ; 134(1): 399-418, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33155062

RESUMO

KEY MESSAGE: We identified genomic regions associated with six quality-related traits in wheat under two sowing conditions and analyzed the effects of multienvironment-significant SNPs on the stability of these traits. Grain quality affects the nutritional and commercial value of wheat (Triticum aestivum L.) and is a critical factor influencing consumer preferences for specific wheat varieties. Climate change is predicted to increase environmental stress and thereby reduce wheat quality. Here, we performed a genotyping assay involving the use of the wheat 90 K array in a genome-wide association study of six quality-related traits in 486 wheat accessions under two sowing conditions (normal and late sowing) over 4 years. We identified 64 stable quantitative trait loci (QTL), including 10 for grain protein content, 9 for wet gluten content, 4 for grain starch content, 14 for water absorption, 15 for dough stability time and 12 for grain hardness in wheat under two sowing conditions. These QTL harbored 175 single nucleotide polymorphisms (SNPs), explaining approximately 3-13% of the phenotypic variation in multiple environments. Some QTL on chromosomes 6A and 5D were associated with multiple traits simultaneously, and two (QNGPC.cau-6A, QNGH.cau-5D) harbored known genes, such as NAM-A1 for grain protein content and Pinb for grain hardness, whereas other QTL could facilitate gene discovery. Forty-three SNPs that were detected under late or both normal and late sowing conditions appear to be related to phenotypic stability. The effects of these SNP alleles were confirmed in the association population. The results of this study will be useful for further dissecting the genetic basis of quality-related traits in wheat and developing new wheat cultivars with desirable alleles to improve the stability of grain quality.


Assuntos
Locos de Características Quantitativas , Sementes/química , Triticum/genética , Alelos , Grão Comestível/genética , Estudos de Associação Genética , Genótipo , Glutens , Fenótipo , Polimorfismo de Nucleotídeo Único , Amido , Tempo (Meteorologia)
13.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380646

RESUMO

Starch and prolamin composition and content are important indexes for determining the processing and nutritional quality of wheat (Triticum aestivum L.) grains. Several transcription factors (TFs) regulate gene expression during starch and protein biosynthesis in wheat. Storage protein activator (TaSPA), a member of the basic leucine zipper (bZIP) family, has been reported to activate glutenin genes and is correlated to starch synthesis related genes. In this study, we generated TaSPA-B overexpressing (OE) transgenic wheat lines. Compared with wild-type (WT) plants, the starch content was slightly reduced and starch granules exhibited a more polarized distribution in the TaSPA-B OE lines. Moreover, glutenin and ω- gliadin contents were significantly reduced, with lower expression levels of related genes (e.g., By15, Dx2, and ω-1,2 gliadin gene). RNA-seq analysis identified 2023 differentially expressed genes (DEGs). The low expression of some DEGs (e.g., SUSase, ADPase, Pho1, Waxy, SBE, SSI, and SS II a) might explain the reduction of starch contents. Some TFs involved in glutenin and starch synthesis might be regulated by TaSPA-B, for example, TaPBF was reduced in TaSPA-B OE-3 lines. In addition, dual-luciferase reporter assay indicated that both TaSPA-B and TaPBF could transactivate the promoter of ω-1,2 gliadin gene. These results suggest that TaSPA-B regulates a complex gene network and plays an important role in starch and protein biosynthesis in wheat.


Assuntos
Grão Comestível/genética , Grão Comestível/metabolismo , Expressão Gênica , Proteínas de Plantas/genética , Amido/metabolismo , Triticum/genética , Grão Comestível/química , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes/metabolismo , Sementes/ultraestrutura , Amido/ultraestrutura , Triticum/química , Triticum/metabolismo
14.
Theor Appl Genet ; 133(7): 2259-2269, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32347319

RESUMO

KEY MESSAGE: An InDel marker closely linked with a major and stable quantitative trait locus (QTL) on chromosome 4BS, QSnpa.cau-4B, controlling spike number per unit area will benefit wheat yield improvement. Spike number per unit area (SNPA) is an essential yield-related trait, and analyzing its genetic basis is important for cultivar improvement in wheat (Triticum aestivum L.). In this study, we used the F2 population derived from a cross between two wheat accessions displaying significant differences in SNPA to perform quantitative trait locus (QTL) analysis. Through bulked segregant analysis, a major and stable QTL that explained 18.11-82.11% of the phenotypic variation was identified on chromosome 4BS. The QTL interval was validated using F4:5 and F6:7 families and narrowed it to a 24.91-38.36 Mb region of chromosome 4BS according to the 'Chinese Spring' reference genome sequence. In this region, variations in 16 genes caused amino acid changes and three genes were present in only one parent. Among these, we annotated a gene orthologous to TB1 in maize (Zea mays), namely TraesCS4B01G042700, which carried a 44-bp deletion in its promoter in the higher-SNPA parent. An InDel marker based on the insertion/deletion polymorphism was designed and used to diagnose the allelic distribution within a natural population. The frequency of the 44-bp deletion allele associated with higher SNPA was relatively low (13.24%), implying that this favorable allele has not been widely utilized and could be valuable for wheat yield improvement. In summary, we identified a major and stable QTL for SNPA and developed a diagnostic marker for the more-spiked trait, which will be beneficial for molecular-assisted breeding in wheat.


Assuntos
Cromossomos de Plantas , Genes de Plantas , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Fenótipo , Melhoramento Vegetal
15.
Theor Appl Genet ; 133(4): 1213-1225, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31965231

RESUMO

KEY MESSAGE: The semidominant EMS-induced mutant w5 affects epicuticular wax deposition and mapped to an approximately 194-kb region on chromosome 7DL. Epicuticular wax is responsible for the glaucous appearance of plants and protects against many biotic and abiotic stresses. In wheat (Triticum aestivum L.), ß-diketone is a major component of epicuticular wax in adult plants and contributes to the glaucousness of the aerial organs. In the present study, we identified an ethyl methanesulfonate-induced epicuticular wax-deficient mutant from the elite wheat cultivar Jimai22. Compared to wild-type Jimai22, the mutant lacked ß-diketone and failed to form the glaucous coating on all aerial organs. The mutant also had significantly increased in cuticle permeability, based on water loss and chlorophyll efflux. Genetic analysis indicated that the mutant phenotype is controlled by a single, semidominant gene on the long arm of chromosome 7D, which was not allelic to the known wax gene loci W1-W4, and was therefore designated W5. W5 was finely mapped to an ~ 194-kb region (flanked by the molecular markers SSR2 and STARP11) that harbored four annotated genes according to the reference genome of Chinese Spring (RefSeq v1.0). Collectively, these data will broaden the knowledge of the genetic basis underlying epicuticular wax deposition in wheat.


Assuntos
Genes Dominantes , Mutação/genética , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Triticum/genética , Ceras/metabolismo , Mapeamento Cromossômico , Genes de Plantas , Loci Gênicos , Epiderme Vegetal/ultraestrutura , Proteínas de Plantas/metabolismo
16.
Pest Manag Sci ; 75(6): 1718-1725, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30525312

RESUMO

BACKGROUND: Grain aphid (Sitobion avenae F.) is a dominant pest that limits cereal crop production around the globe. Gq proteins have important roles in signal transduction in insect olfaction. Plant-mediated RNA interference (RNAi) has been widely studied in insect control, but its application for the control wheat aphid in the field requires further study. Here, we used double-stranded (ds)RNA feeding to verify the potential of selected Gqα fragments for host-mediated RNAi, and then evaluated the effect of RNAi on aphid olfaction in transgenic wheat in the greenhouse and field. RESULTS: Gqα gene was expressed in the aphid life cycle, and a 540 bp fragment shared 98.1% similarity with the reported sequence. dsGqα feeding reduced the expression of Gqα, and both reproduction and molting in the grain aphid. Feeding transgenic lines in the greenhouse downregulated expression of aphid Gqα, and significantly reduced reproduction and molting numbers. Furthermore, our field results indicate that transgenic lines have lower aphid numbers and higher 1000-grain weight than an unsprayed wild-type control. CONCLUSION: Plant-mediated silencing of an essential olfactory-related Gqα gene could enhance resistance to grain aphid in common wheat in both the greenhouse and the field. © 2018 Society of Chemical Industry.


Assuntos
Afídeos/genética , Ambiente Controlado , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Controle Biológico de Vetores/métodos , Interferência de RNA , Olfato/genética , Triticum/genética , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/fisiologia , Muda/genética , Plantas Geneticamente Modificadas , Reprodução/genética
17.
Pest Manag Sci ; 74(12): 2754-2760, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29737050

RESUMO

BACKGROUND: Chitin is an important component of the insect exoskeleton and peritrophic membrane. Chitin synthase 1 (CHS1) is a key enzyme in the chitin synthesis pathway, and has a role in insect molting and growth. Plant-mediated RNA interference (RNAi) has been used as a more target-specific and environmentally safe approach to prevent and control agricultural insects. The aims of this study were to use grain aphid (Sitobion avanae) CHS1 as the target gene and to produce transgenic wheat lines for aphid control via plant-mediated RNAi. RESULTS: Expression levels of CHS1 changed at different developmental stages. After feeding on the representative T3 transgenic lines Tb5-2 and Tb10-3, CHS1 expression levels in grain aphid decreased by 50.29% and 45.32%, respectively; and total and molting aphid numbers reduced significantly, compared with controls. Consistent with this, aphid numbers in mixed natural populations reduced significantly in the respective T4 and T5 transgenic lines under field conditions, and T5 transgenic lines had higher grain weight compared with the unsprayed insecticide wild-type and insecticide-sprayed wild-type. CONCLUSION: These results indicate that plant-mediated RNAi of the grain aphid CHS1 gene confers common wheat resistance against aphids. © 2018 Society of Chemical Industry.


Assuntos
Afídeos/genética , Quitina Sintase/deficiência , Quitina Sintase/genética , Controle Biológico de Vetores , Interferência de RNA , Triticum/fisiologia , Sequência de Aminoácidos , Animais , Afídeos/fisiologia , Cruzamento , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Triticum/crescimento & desenvolvimento
18.
BMC Plant Biol ; 17(1): 122, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28697758

RESUMO

BACKGROUND: Grain protein concentration (GPC) is a major determinant of quality in barley (Hordeum vulgare L.). Breeding barley cultivars with high GPC has practical value for feed and food properties. The aim of the present study was to identify quantitative trait loci (QTLs) for GPC that could be detected under multiple environments. RESULTS: A population of 190 recombinant inbred lines (RILs) deriving from a cross between Chinese landrace ZGMLEL with high GPC (> 20%) and Australian cultivar Schooner was used for linkage and QTL analyses. The genetic linkage map spanned 2353.48 cM in length with an average locus interval of 2.33 cM. GPC was evaluated under six environments for the RIL population and the two parental lines. In total, six environmentally stable QTLs for GPC were detected on chromosomes 2H (1), 4H (1), 6H (1), and 7H (3) and the increasing alleles were derived from ZGMLEL. Notably, the three QTLs on chromosome 7H (QGpc.ZiSc-7H.1, QGpc.ZiSc-7H.2, and QGpc.ZiSc-7H.3) that linked in coupling phase were firstly identified. Moreover, the genetic effects of stable QTLs on chromosomes 2H, 6H and 7H were validated using near isogenic lines (NILs). CONCLUSIONS: Collectively, the identified QTLs expanded our knowledge about the genetic basis of GPC in barley and could be selected to develop cultivars with high grain protein concentration.


Assuntos
Cromossomos de Plantas , Grão Comestível/genética , Hordeum/genética , Proteínas de Plantas/genética , Mapeamento Cromossômico , Repetições de Microssatélites , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
19.
Sci Rep ; 7(1): 3468, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615669

RESUMO

Heat stress, a major abiotic stressor of wheat (Triticum aestivum L.), often results in reduced yield and decreased quality. In this study, a proteomic method, Tags for Relative and Absolute Quantitation Isobaric (iTRAQ), was adopted to analyze the protein expression profile changes among wheat cultivar Jing411 under heat stress. Results indicated that there were 256 different proteins expressed in Jing411 under heat stress. According to the result of gene annotation and functional classification, 239 proteins were annotated by 856 GO function entries, including growth and metabolism proteins, energy metabolism proteins, processing and storage proteins, defense-related proteins, signal transduction, unknown function proteins and hypothetical proteins. GO enrichment analysis suggested that the differentially expressed proteins in Jing411 under heat stress were mainly involved in stimulus response (67), abiotic stress response (26) and stress response (58), kinase activity (12), and transferase activity (12). Among the differentially expressed proteins in Jing411, 115 were attributed to 119 KEGG signaling/metabolic pathways. KEGG pathway enrichment analysis in Jing411 showed that heat stress mainly affected the starch and sucrose metabolism as well as protein synthesis pathway in the endoplasmic reticulum. The protein interaction network indicated that there were 8 differentially expressed proteins that could form an interaction network in Jing411.


Assuntos
Resposta ao Choque Térmico , Proteoma , Proteômica , Triticum/metabolismo , Biologia Computacional/métodos , Ontologia Genética , Temperatura Alta , Anotação de Sequência Molecular , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Triticum/crescimento & desenvolvimento
20.
BMC Genet ; 16: 127, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511975

RESUMO

BACKGROUND: Inducing mutations are considered to be an effective way to create novel genetic variations and hence novel agronomical traits in wheat. This study was conducted to assess the genetic differences between Shi4185 and its mutant line Fu4185, produced by gamma radiation with larger grain, and to identify quantitative trait loci (QTLs) for thousand kernel weight (TKW). RESULTS: Phenotypic analysis revealed that the TKW of Fu4185 was much higher than that of Shi4185 under five different environments. At the genomic level, 110 of 2019 (5.4%) simple sequence repeats (SSR) markers showed polymorphism between Shi4185 and Fu4185. Notably, 30% (33 out of 110) polymorphic SSR markers were located on the D-genome, which was higher than the percentage of polymorphisms among natural allohexaploid wheat genotypes, indicating that mutations induced by gamma radiation could be a potential resource to enrich the genetic diversity of wheat D-genome. Moreover, one QTL, QTkw.cau-5D, located on chromosome 5DL, with Fu4185 contributing favorable alleles, was detected under different environments, especially under high temperature conditions. CONCLUSIONS: QTkw.cau-5D is an environmental stable QTL, which may be a desired target for genetic improvement of wheat kernel weight.


Assuntos
Raios gama , Mutação/genética , Sementes/anatomia & histologia , Triticum/genética , Triticum/efeitos da radiação , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Tamanho do Órgão/genética , Fenótipo , Polimorfismo Genético , Locos de Características Quantitativas/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA