Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 194, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172097

RESUMO

The properties of two-dimensional covalent organic frameworks (2D COFs), including porosity, catalytic activity as well as electronic and optical properties, are greatly affected by their interlayer stacking structures. However, the precise control of their interlayer stacking mode, especially in a reversible fashion, is a long-standing and challenging pursuit. Herein, we prepare three 2D copper-organic frameworks, namely JNM-n (n = 7, 8, and 9). Interestingly, the reversible interlayer sliding between eclipsed AA stacking (i.e., JNM-7-AA and JNM-8-AA) and staggered ABC stacking (i.e., JNM-7-ABC and JNM-8-ABC) can be achieved through environmental stimulation, which endows reversible encapsulation and release of lipase. Importantly, JNM-7-AA and JNM-8-AA exhibit a broader light absorption range, higher charge-separation efficiency, and higher photocatalytic activity for sensitizing O2 to 1O2 and O2•- than their ABC stacking isostructures. Consequently, JNM-8-AA deliver significantly enhanced photocatalytic activities for oxidative cross-coupling reactions compared to JNM-8-ABC and other reported homogeneous and heterogeneous catalysts.

2.
Angew Chem Int Ed Engl ; 62(35): e202306497, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37259979

RESUMO

Owing to the wide and growing demand for primary alcohols, the development of efficient catalysts with high regioselectivity remains a worthwhile pursuit. However, according to Markovnikov's rule, it is a challenge to obtain primary alcohols with high yields and regioselectivity from terminal alkenes or alkynes. Herein, we report the synthesis of a photosensitizing two-dimensional (2D) metal-organic framework (MOF) from cyclic trinuclear copper(I) units (Cu-CTUs) and a boron dipyrro-methene (Bodipy) ligand. The MOF features broadband light absorption, excellent photoinduced charge separation efficiency, and photochemical properties. By integrating the copper-catalyzed hydroboration and photocatalyzed aerobic oxidation, it can catalyze terminal alkenes and alkynes to produce primary alcohols via a one-pot tandem reaction with excellent regioselectivity, good overall yields in two-step reactions (up to 85 %), broad substrate compatibility (32 examples) and good reusability under mild conditions.

3.
J Am Chem Soc ; 144(38): 17487-17495, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36047954

RESUMO

Two-dimensional (2D) metal-organic framework nanosheets (MONs) or membranes are classes of periodic, crystalline polymeric materials that may show unprecedented physicochemical properties due to their modular structures, high surface areas, and high aspect ratios. Yet preparing 2D MONs from multiple components and two different types of polymerization reaction remains challenging and less explored. Here, we report the synthesis of MOF films via interfacial polymerization, which involves three active monomers for simultaneous polycondensation and polycoordination taking place in a confined interface. The well-defined lamellar structure of the MOF films allowed feasible and scalable exfoliation to produce free-standing 2D MONs with high aspect ratio up to 2000:1 and ultrathin thickness (∼1.7 nm). The pore structure was revealed by high-resolution TEM images with near-atomic precision. The imide-linkage of MONs provided superior thermal (up to 530 °C) and good chemical stability in the pH range from 3 to 12. More importantly, the MONs exhibited exceptional catalytic activity and superior reusability for the hydroboration reactions of alkynes, in which the turnover frequency (TOF) reached 41734 h-1, which is 2-4 orders of magnitude greater than that reported for homogeneous and heterogeneous catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA