Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
J Med Chem ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136241

RESUMO

The serine/threonine phosphatase family is important in tumor progression and survival. Due to the high conserved catalytic domain, designing selective inhibitors is challenging. Herein, we obtained compound 28a with 38-fold enhanced PP5 selectivity (PP2A/5 IC50 = 33.8/0.9 µM) and improved drug-like properties (favorable stability and safety, F = 82.0%) by rational drug design based on a phase II PP2A/5 dual target inhibitor LB-100. Importantly, we found the spatial conformational restriction of the 28a indole fragment was responsible for the selectivity of PP5. Thus, 28a activated p53 and downregulated cyclin D1 and MGMT, which showed potency in cell cycle arrest and reverse temozolomide (TMZ) resistance in the U87 MG cell line. Furthermore, oral administration of 28a and TMZ was well tolerated to effectively inhibit tumor growth (TGI = 87.7%) in the xenograft model. Collectively, these results implicate 28a could be a drug candidate by reversing TMZ resistance with a selective PP5 inhibition manner.

2.
J Med Chem ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145509

RESUMO

The activation of PP5 is essential for a variety of cellular processes, as it participates in a variety of biological pathways by dephosphorylating substrates. However, activation of PP5 by small molecules has been a challenge due to its native "self-inhibition" mechanism, which is controlled by the N-terminal TPR domain and the C-terminal αJ helix. Here, we reported the discovery of DDO-3733, a well-identified TPR-independent PP5 allosteric activator, which facilitates the dephosphorylation process of downstream substrates. Considering the negative regulatory effect of PP5 on heat shock transcription factor HSF1, pharmacologic activation of PP5 by DDO-3733 was found to reduce the HSP90 inhibitor-induced heat shock response. These results provide a chemical tool to advance the exploration of PP5 as a potential therapeutic target and highlight the value of pharmacological activation of PP5 to reduce heat shock toxicity of HSP90 inhibitors.

3.
J Med Chem ; 67(15): 12521-12533, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047113

RESUMO

Ferroptosis, a distinctive form of programmed cell death, has been implicated in numerous pathological conditions, and its inhibition is considered a promising therapeutic strategy. Currently, there is a scarcity of efficient antagonists for directly regulating intracellular ferrous iron. Ferritinophagy, an essential process for supplying intracellular labile iron, relies on nuclear receptor coactivator 4 (NCOA4), a selective autophagy receptor for the ferritin iron storage complex, thus playing a pivotal role in ferritinophagy. In this study, we reported a novel von Hippel-Lindau-based NCOA4 degrader, V3, as a potent ferroptosis inhibitor with an intracellular ferrous iron inhibition mechanism. V3 significantly reduced NCOA4 levels and downregulated intracellular ferrous iron (Fe2+) levels, thereby effectively suppressing ferroptosis induced by multiple pathways within cells and alleviating liver damage. This research presents a chemical knockdown tool targeting NCOA4 for further exploration into intracellular ferrous iron in ferroptosis, offering a promising therapeutic avenue for ferroptosis-related acute liver injury.


Assuntos
Ferroptose , Ferro , Coativadores de Receptor Nuclear , Animais , Humanos , Masculino , Camundongos , Descoberta de Drogas , Ferroptose/efeitos dos fármacos , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/antagonistas & inibidores , Peptídeos/química , Peptídeos/efeitos dos fármacos , Peptídeos/metabolismo
4.
J Med Chem ; 67(12): 9869-9895, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38888047

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease. Targeting NLRP3 inflammasome, specifically its interaction with NEK7 via the LRR domain of NLRP3, is a promising therapeutic strategy. Our research aimed to disrupt this interaction by focusing on the LRR domain. Through virtual screening, we identified five compounds with potent anti-inflammatory effects and ideal LRR binding affinity. Lead compound C878-1943 underwent structural optimization, yielding pyridoimidazole derivatives with different anti-inflammatory activities. Compound I-19 from the initial series effectively inhibited caspase-1 and IL-1ß release in an adjuvant-induced arthritis (AIA) rat model, significantly reducing joint swelling and spleen/thymus indices. To further enhance potency and extend in vivo half-life, a second series including II-8 was developed, demonstrating superior efficacy and longer half-life. Both I-19 and II-8 bind to the LRR domain, inhibiting NLRP3 inflammasome activation. These findings introduce novel small molecule inhibitors targeting the LRR domain of NLRP3 protein and disrupt NLRP3-NEK7 interaction, offering a novel approach for RA treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Quinases Relacionadas a NIMA , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Quinases Relacionadas a NIMA/antagonistas & inibidores , Quinases Relacionadas a NIMA/metabolismo , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Humanos , Ratos , Artrite Experimental/tratamento farmacológico , Descoberta de Drogas , Relação Estrutura-Atividade , Masculino , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Simulação de Acoplamento Molecular , Antirreumáticos/farmacologia , Antirreumáticos/química , Antirreumáticos/síntese química , Antirreumáticos/uso terapêutico
5.
Expert Opin Ther Pat ; 34(5): 297-313, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38849323

RESUMO

INTRODUCTION: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1ß) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8+ T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment. AREAS COVERED: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI. EXPERT OPINION: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.


Assuntos
Antineoplásicos , Proteínas de Membrana , Neoplasias , Patentes como Assunto , Humanos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Imunidade Inata/efeitos dos fármacos , Imunoterapia/métodos
6.
Eur J Med Chem ; 274: 116532, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805937

RESUMO

Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.


Assuntos
Antineoplásicos , Inibidores Enzimáticos , Histona-Lisina N-Metiltransferase , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Histonas/metabolismo , Estrutura Molecular , Animais
7.
Expert Opin Ther Pat ; 34(1-2): 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441084

RESUMO

INTRODUCTION: The 90-kDa heat shock protein (HSP90) functions as a molecular chaperone, it assumes a significant role in diseases such as cancer, inflammation, neurodegeneration, and infection. Therefore, the research and development of HSP90 inhibitors have garnered considerable attention. AREAS COVERED: The primary references source for this review is patents obtained from SciFinder, encompassing patents on HSP90 inhibitors from the period of 2020 to 2023.This review includes a thorough analysis of their structural attributes, pharmacological properties, and potential clinical utilities. EXPERT OPINION: In the past few years, HSP90 inhibitors targeting ATP binding pocket are still predominate and one of them has been launched, besides, novel drug design strategies like C-terminal targeting, isoform selective inhibiting and bifunctional molecules are booming, aiming to improve the efficacy and safety. With expanded drug types and applications, HSP90 inhibitors may gradually becoming a sagacious option for treating various diseases.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias/tratamento farmacológico , Patentes como Assunto
8.
Eur J Med Chem ; 269: 116270, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490062

RESUMO

Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.


Assuntos
Proteínas Culina , Ubiquitina-Proteína Ligases , Humanos , Proteínas Culina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo
9.
Drug Discov Today ; 29(5): 103951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514041

RESUMO

Transient receptor potential canonical (TRPC) channels belong to an important class of non-selective cation channels. This channel family consists of multiple members that widely participate in various physiological and pathological processes. Previous studies have uncovered the intricate regulation of these channels, as well as the spatial arrangement of TRPCs and the binding sites for various small molecule compounds. Multiple small molecules have been identified as selective agonists or inhibitors targeting different subtypes of TRPC, including potential preclinical drug candidates. This review covers recent advancements in the understanding of TRPC regulation and structure and the discovery of TRPC small molecules over the past few years, with the aim of facilitating research on TRPCs and small-molecule drug discovery.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Canais de Potencial de Receptor Transitório , Humanos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Bioorg Med Chem ; 102: 117677, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457911

RESUMO

Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma­b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.


Assuntos
Linfoma de Células B , Proteínas Proto-Oncogênicas c-cbl , Humanos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Imunoterapia
11.
Eur J Med Chem ; 268: 116271, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401187

RESUMO

Epigenetic modifications play crucial roles in physiological processes, including cell differentiation, proliferation, and death. Bromodomain/Brd-containing proteins (BCPs) regulate abnormal gene expression in various diseases by recognizing the lysine-ε-N-acetylated residues (KAc) or by acting as transcriptional co-activators. Small molecule inhibitors targeting BCPs offer an attractive strategy for modulating aberrant gene expression. Besides the extensive research on the bromodomain and extra-terminal (BET) domain family proteins, the non-BET proteins have gained increasing attention. Bromodomain containing protein 8 (BRD8), a reader of KAc and co-activator of nuclear receptors (NRs), plays a key role in various cancers. This review provides a comprehensive analysis of the structure, disease-related functions, and inhibitor development of BRD8. Opportunities and challenges for future studies targeting BRD8 in disease treatment are discussed.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Fatores de Transcrição , Lisina , Domínios Proteicos , Proteínas que Contêm Bromodomínio
12.
Eur J Med Chem ; 268: 116241, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382391

RESUMO

Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) are RNA-binding proteins that regulate a variety of biological processes. In recent years, several studies have found that IGF2BPs play multiple roles in various biological processes, especially in cancer, and speculated on their mechanism of anticancer effect. In addition, targeting IGF2BPs or their downstream target gene has also received extensive attention as an effective treatment for different types of cancer. In this review, we summarized the recent progress on the role of IGF2BPs in cancers and their structural characteristics. We focused on describing the development of inhibitors targeting IGF2BPs and the prospects for further applications.

13.
Future Med Chem ; 16(2): 125-138, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189168

RESUMO

Background: Specifically blocking HSP90-CDC37 interaction is emerging as a prospective strategy for cancer therapy. Aim: Applying a kinase pseudopeptide rationale to the discovery of HSP90-CDC37 protein-protein interaction (PPI) inhibitors. Methods: Pseudosubstrates were identified through sequence alignment and evaluated by biolayer interferometry assay, co-immunoprecipitation assay and antiproliferation assay. Results: TAT-DDO-59120 was identified to disrupt HSP90-CDC37 PPI through directly binding to HSP90, both extracellularly and intracellularly. In addition, the identified peptide showed ideal antiproliferative activity against the colorectal cancer cell HCT116 (IC50 = 12.82 µM). Conclusion: Compared with the traditional method of screening a large compound library to identify PPI inhibitors, this method is rapid and efficient with strong purpose, which provides a novel strategy for designing HSP90-CDC37 PPI inhibitors.


Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Ligação Proteica
14.
Cell Chem Biol ; 31(6): 1188-1202.e10, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38157852

RESUMO

Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (3), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. 3 promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from in vivo experiments showed that 3, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.


Assuntos
Inflamação , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Humanos , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Masculino
15.
Eur J Med Chem ; 264: 116031, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101039

RESUMO

Phosphatase is a kind of enzyme that can dephosphorylate target proteins, which can be divided into serine/threonine phosphatase and tyrosine phosphatase according to its mode of action. Current evidence showed multiple phosphatases were highly correlated with diseases including various cancers, demonstrating them as potential targets. However, currently, targeting phosphatases with small molecules faces many challenges, resulting in no drug approved. In this case, phosphatases are even regarded as "undruggable" targets for a long time. Recently, a variety of strategies have been adopted in the design of small molecule inhibitors targeting phosphatases, leading many of them to enter into the clinical trials. In this review, we classified these inhibitors into 4 types, including (1) molecular glues, (2) small molecules targeting catalytic sites, (3) allosteric inhibition, and (4) bifunctional molecules (proteolysis targeting chimeras, PROTACs). These molecules with diverse strategies prove the feasibility of phosphatases as drug targets. In addition, the combination therapy of phosphatase inhibitors with other drugs has also entered clinical trials, which suggests a broad prospect. Thus, targeting phosphatases with small molecules by different strategies is emerging as a promising way in the modulation of pathogenetic phosphorylation.


Assuntos
Neoplasias , Fosfoproteínas Fosfatases , Humanos , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/uso terapêutico , Proteínas Tirosina Fosfatases , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Fosforilação , Neoplasias/tratamento farmacológico , Proteólise
16.
Eur J Med Chem ; 265: 116080, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142510

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease and lacks effective therapeutic agents. Dysregulation of transcription mediated by bromodomain and extra-terminal domain (BET) proteins containing two different bromodomains (BD1 and BD2) is an important factor in multiple diseases, including MS. Herein, we identified a series of BD1-biased inhibitors, in which compound 16 showed nanomolar potency for BD1 (Kd = 230 nM) and a 60-fold selectivity for BRD4 BD1 over BD2. The co-crystal structure of BRD4 BD1 with 16 indicated that the hydrogen bond interaction of 16 with BD1-specific Asp145 is important for BD1 selectivity. 16 showed favorable brain distribution in mice and PK properties in rats. 16 was able to inhibit microglia activation and had significant therapeutic effects on EAE mice including improvement of spinal cord inflammatory conditions and demyelination protection. Overall, these results suggest that brain-permeable BD1 inhibitors have the potential to be further investigated as therapeutic agents for MS.


Assuntos
Esclerose Múltipla , Fatores de Transcrição , Ratos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Esclerose Múltipla/tratamento farmacológico , Domínios Proteicos , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo
17.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138431

RESUMO

At every juncture in history, the design and identification of new drugs pose significant challenges. To gain valuable insights for future drug development, we conducted a detailed analysis of New Molecular Entitiy (NME) approved by the Food and Drug Administration (FDA) from 2012 to 2022 and focused on the analysis of first-in-class (FIC) small-molecules from a perspective of a medicinal chemist. We compared the change of numbers between all the FDA-approved NMEs and FIC, which could be more visual to analyze the changing trend of FIC. To get a more visual change of molecular physical properties, we computed the annual average trends in molecular weight for FIC across various therapeutic fields. Furthermore, we consolidated essential information into three comprehensive databases, which covered the indications, canonical SMILES, structural formula, research and development (R&D) institutions, molecular weight, calculated LogP (CLogP), and route of administration on all the small-molecule pharmaceutical. Through the analysis of the database of 11 years of approvals, we forecast the development trend of NME approval in the future.


Assuntos
Aprovação de Drogas , Desenvolvimento de Medicamentos , Estados Unidos , Preparações Farmacêuticas , United States Food and Drug Administration , Bases de Dados Factuais
18.
J Med Chem ; 66(23): 15944-15959, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37983486

RESUMO

M6A (N6-methyladenosine) plays a significant role in regulating RNA processing, splicing, nucleation, translation, and stability. AlkB homologue 5 (ALKBH5) is an Fe(II)/2-oxoglutarate (2-OG)-dependent dioxygenase that demethylates mono- or dimethylated adenosines. ALKBH5 can be regarded as an oncogenic factor for various human cancers. However, the discovery of potent and selective ALKBH5 inhibitors remains a challenge. We identified DDO-2728 as a novel and selective inhibitor of ALKBH5 by structure-based virtual screening and optimization. DDO-2728 was not a 2-oxoglutarate analogue and could selectively inhibit the demethylase activity of ALKBH5 over FTO. DDO-2728 increased the abundance of m6A modifications in AML cells, reduced the mRNA stability of TACC3, and inhibited cell cycle progression. Furthermore, DDO-2728 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. Collectively, our results highlight the development of a selective probe for ALKBH5 that will pave the way for the further study of ALKBH5 targeting therapies.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Ácidos Cetoglutáricos , Dioxigenases/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Proteínas Associadas aos Microtúbulos , Dioxigenase FTO Dependente de alfa-Cetoglutarato
19.
Eur J Med Chem ; 261: 115859, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37839344

RESUMO

Abnormal post-translational modification of microtubule-associated protein Tau (MAPT) is a prominent pathological feature in Alzheimer's disease (AD). Previous research has focused on designing small molecules to target Tau modification, aiming to restore microtubule stability and regulate Tau levels in vivo. However, progress has been hindered, and no effective Tau-targeted drugs have been successfully marketed, which urgently requires more strategies. Heat shock proteins (HSPs), especially Hsp90 and Hsp70, have been found to play a crucial role in Tau maturation and degradation. This review explores innovative approaches using small molecules that interact with the chaperone system to regulate Tau levels. We provide a comprehensive overview of the mechanisms involving HSPs and their co-chaperones in the Tau regulation cycle. Additionally, we analyze small molecules targeting these chaperone systems to modulate Tau function. By understanding the characteristics of the molecular chaperone system and its specific impact on Tau, we aim to provide a perspective that seeks to regulate Tau levels through the manipulation of the molecular chaperone system and ultimately develop effective treatments for AD.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Chaperonas Moleculares , Doença de Alzheimer/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico , Proteínas de Choque Térmico HSP70
20.
Curr Drug Targets ; 24(12): 959-980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37653633

RESUMO

Stimulator of interferon genes (STING) plays a vital role in the human innate immune system. Aberrant expression of STING has been proven to be associated with several diseases, such as STING-associated vasculopathy with onset in infancy, Aicardi-Goutieres syndrome, and systemic lupus erythematosus. Therefore, inhibition of the STING signaling pathway can also be expected to provide effective therapeutic strategies for treating specific inflammatory and autoimmune diseases. However, the development of STING inhibitors is still in its infancy. There is still a need for additional efforts toward the discovery of new skeletons and more potent lead compounds for STING inhibition to meet clinical demand. In this review, we provide a summary of STING inhibitors, classified by different structural skeletons, reported in patents published from 2019 to July 2022. In addition, we also focus on the STING inhibitors, representative structures, biological activity, and mechanisms of action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA