Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
3.
Exp Dermatol ; 33(1): e14964, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37905720

RESUMO

Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.


Assuntos
Interleucina-17 , Psoríase , Humanos , Citocinas , Psoríase/tratamento farmacológico
4.
Brain Sci ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37626511

RESUMO

Glioblastoma (GBM) is a highly malignant and aggressive tumor with poor prognosis. Therefore, the discovery of new prognostic molecular markers is of great significance for clinical prognosis. The CXC chemokine receptor (CXCR) members play a key regulatory role in many cancers. In this study, we explore the clinical value and application of the CXCR members in primary glioblastoma. Two GBM datasets from The Cancer Genome Atlas (TCGA) and The China Glioma Genome Atlas (CGGA) databases were used to explore the relationship between differential expression of CXCRs and GBM subtypes as well as immune infiltration. C-X-C motif chemokine receptor 4 (CXCR4) was screened as an independent prognostic factor, and a nomogram and risk prediction model were developed and tested in the CGGA database using the TCGA database. Receiver operating curve (ROC) and decision curve analysis (DCA) found good accuracy and net benefit of the models. The correlation of CXCR4 with immune infiltration and tumor was analyzed using CancerSEA and TIMER. In in vitro experiments, we found that CXCR4 was significantly overexpressed in glioblastoma and was closely related to the inflammatory response of U251/U87 cells. CXCR4 is an excellent independent prognostic factor for glioblastoma and positively correlates with tumor inflammation.

5.
Stroke Vasc Neurol ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612054

RESUMO

BACKGROUND: Subarachnoid haemorrhage (SAH) can result in a highly unfavourable prognosis. In recent years, the study of SAH has focused on early brain injury (EBI), which is a crucial progress that contributes to adverse prognosis. SAH can lead to various complications, including mitochondrial dysfunction and DNA damage. Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein with multifaceted functionality integral to DNA repair and redox signalling. However, the role of APE1 in mitochondrial DNA damage repair after SAH is still unclear. METHODS: Our study involved an in vivo endovascular perforation model in rats and an in vitro neuron oxyhaemoglobin intervention. Then, the effects of APE1 on mitochondrial DNA damage repair were analysed by western blot, immunofluorescence, quantitative real-time PCR, mitochondrial bioenergetics measurement and neurobehavioural experiments. RESULTS: We found that the level of APE1 decreased while the mitochondria DNA damage and neuronal death increased in a rat model of SAH. Overexpression of APE1 improved short-term and long-term behavioural impairment in rats after SAH. In vitro, after primary neurons exposed to oxyhaemoglobin, APE1 expression significantly decreased along with increased mitochondrial DNA damage, a reduction in the subunit of respiratory chain complex levels and subsequent respiratory chain dysfunction. Overexpression of APE1 relieved energy metabolism disorders in the mitochondrial of neurons and reduced neuronal apoptosis. CONCLUSION: In conclusion, APE1 is involved in EBI after SAH by affecting mitochondrial apoptosis via the mitochondrial respiratory chain. APE1 may potentially play a vital role in the EBI stage after SAH, making it a critical target for treatment.

7.
Ther Adv Neurol Disord ; 16: 17562864231181180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384114

RESUMO

Background: Stent retriever, contact aspiration, and combined treatment are crucial mechanical thrombectomy strategies for patients with acute ischemic stroke (AIS). Objectives: The aim of this study was to compare and rank three different mechanical thrombectomy strategies for AIS due to large vessel occlusion by means of a Bayesian network meta-analysis. Design: A systematic review and Bayesian network meta-analysis based on PRISMA guidelines. Data sources and methods: Relevant randomized controlled trials (RCTs) were identified in Embase, MEDLINE, the Cochrane Library database, and Clinicaltrials.gov from inception to 15 March 2022. We used random effect models to estimate corresponding odds ratios (ORs) and rank probabilities using pairwise and Bayesian network meta-analysis. We applied the grading of recommendations assessment, development, and evaluation (GRADE) methodology to rate the certainty of evidence. Results: We identified 10 RCTs enrolling 2098 participants. As for modified Rankin Scale (mRS) 0-2, moderate certainty evidence established all mechanical thrombectomy strategies that were more effective than standard medical treatment [combined: log OR 0.9288, 95% credibility intervals (CrI) 0.1268-1.7246; contact aspiration: log OR 0.9507, 95% CrI 0.3361-1.5688; stent retriever: log OR 1.0919, 95% CrI 0.6127-1.5702]. The same applied to mRS 0-3 (combined: log OR 0.9603, 95% CrI 0.2122-1.7157; contact aspiration: log OR 0.7554, 95% CrI 0.1769-1.3279; stent retriever: log OR 1.0046, 95% CrI 0.6001-1.4789). Combined treatment was superior to stent retriever in substantial reperfusion (log OR 0.8921, 95% CrI 0.2105-1.5907, high certainty). Stent retriever had the highest probability of being optimal for mRS 0-2 and mRS 0-3. Standard medical treatment had the lowest risk of subarachnoid hemorrhage. For all other outcomes, combined treatment was most likely the best treatment. Conclusion: Our results indicated that, with the exception of functional outcome, combined treatment might be the outstanding strategy. Apart from subarachnoid hemorrhage, all three mechanical thrombectomy strategies proved better strategies than standard medical treatment. Registration: PROSPERO (CRD42022351878).

8.
Front Endocrinol (Lausanne) ; 14: 1120779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124754

RESUMO

Background and objectives: Intravenous recombinant tissue plasminogen activator (rtPA) thrombolysis is an effective treatment for acute ischemic stroke. Hyperglycemia is a major risk factor for the occurrence, development, and prognosis of ischemic stroke. This meta-analysis purposefully estimates the association between hyperglycemia and poor prognosis in acute ischemic stroke patients receiving intravenous rtPA thrombolytic therapy. Materials and methods: According to the predefined inclusion criteria, we searched PubMed, Web of Science, and Cochrane Library databases. The association of high blood glucose(>140mg/dl) with symptomatic intracranial hemorrhage (sICH), poor clinical outcome and mortality at 90 days post-rtPA thrombolysis was studied using both a common effects model and a random effects model. Odds ratios (ORs) were plotted on forest plots. Results: Of a total cohort of 2565 patients who received intravenous thrombolytic therapy, 721 had higher blood glucose. High glucose level significantly increased the odds of sICH (OR 1.80; 95% confidence interval(95%CI): 1.30- 2.50) and poor clinical outcome at 90 days (OR 1.82; 95%CI: 1.52-2.19), and all-cause mortality at 90 days (OR 2.51; 95%CI:1.65-3.82). Conclusions: In our meta-analysis, high blood glucose was significantly associated with sICH, poor clinical outcome and higher mortality at 90 days.


Assuntos
Isquemia Encefálica , Hiperglicemia , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ativador de Plasminogênio Tecidual/uso terapêutico , Acidente Vascular Cerebral/epidemiologia , Glicemia , AVC Isquêmico/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Prognóstico , Terapia Trombolítica/efeitos adversos , Hemorragias Intracranianas/epidemiologia , Hiperglicemia/tratamento farmacológico , Hiperglicemia/complicações
9.
Transl Cancer Res ; 12(2): 439-446, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915582

RESUMO

Background: Thyroid cancer has low incidence and mortality. While metastatic cancer is the most common type of intracranial cancer, patients with intracranial metastases from thyroid cancer very rarely present with seizures. Here, we describe a case study and review the neurological symptoms and histopathology of intracranial metastases from thyroid cancer. Case Description: A 38-year-old woman was diagnosed with intracranial metastases from papillary thyroid cancer, with the chief symptom being generalized seizures. The bilateral frontal masses were completely resected in 2 operations, after which the patient was treated with whole-brain radiotherapy and tyrosine kinase inhibitors (TKIs). It has now been over 13 years since thyroid cancer resection and 51 months since she was diagnosed with intracranial metastases from papillary thyroid cancer. The long-term survival might be due to the effective and prompt treatment. Through literature review, we found the incidence of intracranial metastases from different subtypes of thyroid cancer to be inconsistent with epidemiological findings in thyroid cancer. Conclusions: Intracranial metastases of thyroid cancer should be considered when the patient has a history of thyroid cancer with seizures. A combination of surgery, radiation therapy, and TKI drugs may prolong survival.

10.
Brain Res Bull ; 197: 31-41, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990325

RESUMO

Remote Ischemic Postconditioning (RIPostC) has become a research hotspot due to its protective effect on the brain in clinical studies related to ischemic stroke. The purpose of this study is to investigate the protective effect of RIPostC after ischemic stroke in rats. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the wire embolization method. RIPostC was obtained by inducing temporary ischemia in the hind limbs of rats. First, based on the results of short-term behavioral measures and long-term neurological function experiments, RIPostC was found to have a protective effect on the MCAO/R model and to improve neurological recovery in rats. Compared to the sham group, RIPostC upregulated the expression levels of C-X-C motif chemokine receptor 4(CXCR4) in the brain and stromal cell-derived factor-1(SDF-1α) in peripheral blood. In addition, RIPostC upregulated CXCR4 expression on CD34 + stem cells in peripheral blood in flow cytometric assays. Meanwhile, according to the results of EdU/DCX co-staining and CD31 staining, it was found that the effect of RIPostC on ameliorating brain injury via SDF-1α/CXCR4 signaling axis may be associated with vascular neogenesis. Finally, after inhibiting the SDF-1α/CXCR4 signaling axis using AMD3100(Plerixafor), we found that the neuroprotective effect of RIPostC was diminished. Taken together, RIPostC can improve neurobehavioral damage induced by MCAO/R in rats, and its mechanism may be related to SDF-1α/CXCR4 signaling axis. Therefore, RIPostC can be used as an intervention strategy for stroke. SDF-1α/CXCR4 signaling axis can also be a potential target for intervention.


Assuntos
Compostos Heterocíclicos , Pós-Condicionamento Isquêmico , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Quimiocina CXCL12/metabolismo , Pós-Condicionamento Isquêmico/métodos , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/farmacologia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/complicações , Receptores CXCR4/metabolismo
11.
Neurochem Res ; 48(6): 1925-1944, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36757575

RESUMO

Subarachnoid hemorrhage (SAH) is associated with circadian rhythm abnormalities, in which REV-ERBα plays a major regulatory role. Our ambition was to investigate the capacity of REV-ERBα to inhibit neuronal neuroapoptosis induced by early brain injury (EBI) after SAH. The endovascular perforation model was used to produce experimental SAH in Sprague-Dawley rats. Specific small-interfering RNA was used to downregulate the expression REV-ERBα while SR9009 was used to upregulate the expression before assessments. Short- and long-term neurobehavior assessments, immunofluorescence staining, TUNEL staining, Nissl staining, brain water content, and Western blot were performed. The expression level of endogenous REVERBα tended to increase and then decrease after SAH and peaked at 48 h. REV-ERBα upregulation diminished neuronal apoptosis and enhanced neurological function deficits. Meanwhile, REV-ERBα downregulation aggravated the damage. Furthermore, the levels of downstream proteins of REV-ERBα (i.e., brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK)) changed accordingly with REV-ERBα regulation. REV-ERBα may attenuate neuronal apoptosis in EBI after SAH through the BMAL1/CLOCK pathway.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Ratos , Animais , Ratos Sprague-Dawley , Fatores de Transcrição ARNTL , Hemorragia Subaracnóidea/metabolismo , Lesões Encefálicas/metabolismo , Ritmo Circadiano
12.
Neuromolecular Med ; 25(2): 272-285, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36737508

RESUMO

Transient receptor potential mucolipin-1 (TRPML1) is the most abundantly and widely expressed channel protein in the TRP family. While numerous studies have been conducted involving many aspects of TRPML1, such as its role in cell biology, oncology, and neurodegenerative diseases, there are limited reports about what role it plays in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Here we examined the function of TRPML1 in ICH-induced SBI. The caudal arterial blood of rats was injected into the caudate nucleus of basal ganglia to establish an experimental ICH model. We observed that lentivirus downregulated the expression level of TRPML1 and chemical agonist promoted the enzyme activity of TRPML1. The results indicated that the protein levels of TRPML1 in brain tissues increased 24 h after ICH. These results suggested that downregulated TRPML1 could significantly reduce inflammatory cytokines, and ICH induced the production of LDH and ROS. Furthermore, TRPML1 knockout relieved ICH-induced neuronal cell death and degeneration, and declines in learning and memory after ICH could be improved by downregulating the expression of TRPML1. In addition, chemical agonist-expressed TRPML1 showed the opposite effect and exacerbated SBI after ICH. In summary, this study demonstrated that TRPML1 contributed to brain injury after ICH, and downregulating TRPML1 could improve ICH-induced SBI, suggesting a potential target for ICH therapy.


Assuntos
Lesões Encefálicas , Doenças Neuroinflamatórias , Ratos , Animais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Morte Celular , Lesões Encefálicas/etiologia , Citocinas
13.
Stroke Vasc Neurol ; 8(3): 217-228, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36526331

RESUMO

BACKGROUND: Sex differences affect the occurrence, progression and regression of subarachnoid haemorrhage (SAH). Oestrogen plays a protective role in alleviating the vasospasm and neuronal apoptosis induced by SAH. However, whether oestrogen affects blood‒brain barrier (BBB) integrity has not been fully studied. Oestrogen has been found to regulate the sonic hedgehog (SHH) signalling pathway through the oestrogen receptor in gastric cancer and adrenal glands, and the SHH signalling pathway has an important role in maintaining the BBB by upregulating the expression of tight junction proteins. In this study, we investigated the relationship between oestrogen and the SHH signalling pathway using clinical data and established an experimental SAH model to explore whether oestrogen could ameliorate BBB damage after SAH through the SHH pathway. METHODS: Correlations between oestrogen and the SHH pathway were analysed by patients' cerebrospinal fluid (CSF) samples and the Genotype-Tissue Expression database (GTEx). Then, an experimental rat SAH model was established using the endovascular perforation method and treated with oestrogen, oestrogen inhibitors and SHH signalling pathway inhibitors. Then, the effects of oestrogen on BBB damage were analysed by western blot, immunofluorescence and neurobehavioural experiments. RESULTS: ESLIA detection and correlation analysis showed that oestrogen levels in patients' CSF were positively correlated with the SHH pathway, which was further verified by GTEx gene-correlation analysis. SHH was found to be mainly expressed in neurons and astrocytes in rats under physiological conditions and was upregulated by oestrogen pretreatment. In the SAH model, oestrogen pretreatment was found to reverse SAH-induced decreases in the SHH pathway, which were counteracted by oestrogen receptor inhibitors. Furthermore, oestrogen pretreatment reduced SAH-induced BBB damage, brain oedema and neurological dysfunction, which were eliminated by SHH pathway inhibitors. CONCLUSION: In conclusion, we demonstrate here that oestrogen pretreatment ameliorates brain injury after SAH, at least in part through SHH pathway-mediated BBB protection.


Assuntos
Barreira Hematoencefálica , Hemorragia Subaracnóidea , Feminino , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/tratamento farmacológico , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/uso terapêutico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Proteínas Hedgehog/uso terapêutico , Estrogênios/farmacologia , Estrogênios/metabolismo , Estrogênios/uso terapêutico
14.
Brain Sci ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36009125

RESUMO

BACKGROUND: Bioactive coils have been used for nearly 20 years to improve aneurysm treatments. Previous studies are inadequate for comparing the efficacy and safety between different coils. The aim of this study was to investigate the safety and efficacy of different coils by comparing the percentage of people with different modified Raymond scale grades, re-rupture rates, and mortality in patients with intracranial aneurysms embolized with different coils. METHOD: Randomized controlled trials (RCTs) containing coils for aneurysm interventional treatment were collected from Web of Science, PubMed, and the Cochrane Library up to December 2021. Bayesian network meta-analysis with a randomized or fixed model was performed to compare the efficacy and safety among different bioactive coils and bare platinum coils. RESULTS: We pooled 3362 patients from eight RCTs. No significant differences were found between coils in the proportion of patients with a three-grade classification assessed with the modified Raymond scale immediately after surgery. Hydrogel coils did not show a significant difference in the percentage of patients with a modified Raymond scale grade I postoperatively compared with bare platinum coils (OR, -0.1080; 95% CI, -0.4201-0.2423), but at follow-up, the percentage of patients with modified Raymond scale grade I was significantly higher with hydrogel coils than with bare platinum coils (OR, 0.4957; 95% CI, 0.0060-0.9442). There were no statistical differences between these four coils in terms of aneurysm rupture or re-rupture rate and mortality. CONCLUSION: Though there was no significant difference in the embolization effect between the several coils in the postoperative period, complete embolization was more likely to be achieved with hydrogel coils compared to bare platinum coils at follow-up. There were no significant differences in safety between the several coil materials.

15.
Brain Sci ; 12(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009128

RESUMO

Posterior circulation aneurysms have been regarded as the most challenging for endovascular coiling and microsurgical occlusion. The role of microsurgical treatment is gradually being overlooked and diminishing in the trend of endovascular treatment. As microsurgical occlusion of posterior circulation aneurysms is decreasing, we present our relevant experience to evaluate treatment options and surgical approaches. A retrospective study was conducted in the Department of Neurosurgery of the First Affiliated Hospital of Soochow University between 2016 and 2021. Patients with posterior circulation aneurysms treated by clipping, bypass, and trapping were enrolled and followed up for at least six months. We included 50 patients carrying 53 posterior circulation aneurysms, 43 of whom had aneurysm ruptures. The posterior cerebral artery and posterior inferior cerebellar artery were the most common aneurysm locations. Direct clipping was performed in 43 patients, while bypass and trapping was performed in six patients. The retrosigmoid, far-lateral, and midline or paramedian suboccipital approaches were performed for those aneurysms in the middle and lower thirds. Aneurysms in the upper third required the lateral supraorbital approach, pterional approach, subtemporal approach, and occipital craniotomy. The lateral supraorbital approach was utilized in seven patients for aneurysms above the posterior clinoid process. Thirty-four patients recovered well with modified Rankin score 0-3 at discharge. No patient experienced aneurysm recurrence during the mean follow-up period of 3.57 years. Microsurgery clipping and bypass should be considered in conjunction with endovascular treatment as a treatment option in posterior circulation aneurysms. The lateral supraorbital approach is a feasible, safe, and simple surgical approach for aneurysms above the posterior clinoid process.

16.
J Neurosci ; 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654605

RESUMO

Cerebral ischemia-reperfusion injury in ischemic penumbra is accountable for poor outcome of ischemic stroke patients receiving recanalization therapy. Compelling evidence previously demonstrated a dual role of autophagy in stroke. This study aimed to understand the traits of autophagy in the ischemic penumbra and the potential mechanism that switches the dual role of autophagy. We found that autophagy induction by rapamycin and lithium carbonate performed before ischemia reduced neurological deficits and infarction, while autophagy induction after reperfusion had the opposite effect in the male murine middle cerebral artery occlusion/reperfusion model, both of which were eliminated in mice lacking autophagy (Atg7flox/flox; Nestin-Cre). Autophagic flux determination showed that reperfusion led to a blockage of axonal autophagosome retrograde transport in neurons, which then led to autophagic flux damage. Then, we found that ischemia-reperfusion induced changes in the protein levels of Sec22b and Ykt6 in neurons, two autophagosome transport-related factors, in which Sec22b significantly increased and Ykt6 significantly decreased. In the absence of exogenous autophagy induction, Sec22b knockdown and Ykt6 overexpression significantly alleviated autophagic flux damage, infarction, and neurological deficits in neurons or murine exposed to cerebral ischemia-reperfusion in an autophagy-dependent manner. Furthermore, Sec22b knockdown and Ykt6 overexpression switched the outcome of rapamycin post-treatment from deterioration to neuroprotection. Thus, Sec22b and Ykt6 play key roles in neuronal autophagic flux, and modest regulation of Sec22b and Ykt6 may help to reverse the failure of targeting autophagy induction to improve the prognosis of ischemic stroke.Significance Statement:The highly polarized architecture of neurons with neurites presents challenges for material transport, such as autophagosomes, which form at the neurite tip and need to be transported to the cell soma for degradation. Here, we demonstrate that Sec22b and Ykt6 act as autophagosome porters and play an important role in maintaining the integrity of neuronal autophagic flux. Ischemia-reperfusion-induced excess Sec22b and loss of Ykt6 in neurons lead to axonal autophagosome retrograde trafficking failure, autophagic flux damage, and finally neuronal injury. Facilitated axonal autophagosome retrograde transport by Sec22b knockdown and Ykt6 overexpression may reduce ischemia-reperfusion-induced neuron injury and extend the therapeutic window of pharmacological autophagy induction for neuroprotection.

17.
CNS Neurosci Ther ; 28(7): 1124-1138, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35467084

RESUMO

AIM: The aim was to study the role of Rph3A in neuronal injury induced by cerebral ischemia-reperfusion. METHODS: The protein and mRNA levels of Rph3A in penumbra were detected by Western blot. The localization of Rph3A in different cell types in penumbra was detected by immunofluorescence. Apoptosis in the brain was detected by TUNEL staining. We tested neurobehavioral evaluation using rotarod test, adhesive-removal test, and Morris Water maze test. We examined the expression and localization of Rph3A in cultured neurons and astrocytes in vitro by Western blot and ELISA, respectively. RESULTS: The mRNA and protein levels of Rph3A had significantly increased in brain penumbra of the rat MCAO/R model. Rph3A was mainly distributed in neurons and astrocytes and was significantly increased by MCAO/R. We downregulated Rph3A and found that it further worsened the cerebral infarct, neuronal death and behavioral, cognitive, and memory impairments in rats after MCAO/R. We also found that ischemia-reperfusion upregulated the in vitro protein level and secretion of Rph3A in astrocytes but led to a decrease in the protein level of Rph3A in neurons. CONCLUSION: The increase in Rph3A in the brain penumbra may be an endogenous protective mechanism against ischemia-reperfusion injury, which is mainly dominated by astrocytes.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/metabolismo , Infarto Cerebral , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/metabolismo
18.
Mol Brain ; 15(1): 35, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461284

RESUMO

RUN and FYVE domain-containing 3 (Rufy3) is a well-known adapter protein of a small GTPase protein family and is bound to the activated Ras family protein to maintain neuronal polarity. However, in experimental subarachnoid hemorrhage (SAH), the role of Rufy3 has not been investigated. Consequently, we aimed to investigate the potential role of Rufy3 in an in vivo model of SAH-induced early brain injury (EBI). In addition, we investigated the relevant brain-protective mechanisms. Oxyhemoglobin (OxyHb) stimulation of cultured primary neurons simulated vitro SAH condition. The SAH rat model was induced by infusing autologous blood into the optic chiasma pool and treating the rats with lentivirus-negative control 1 (LV-NC1), lentivirus-Rufy3 shRNA (LV-shRNA), lentivirus-negative control 2 (LV-NC2), lentivirus-Rufy3 (LV-Rufy3), or 8-pCPT-2'-O-Me-cAMP (8p-CPT) (Rap1 agonist). In experiment one, we found that the protein level of Rufy3 decreased and neuronal axon injury in the injured neurons but was rectified by LV-Rufy3 treatment. In experiment two, mRNA and protein levels of Rufy3 were downregulated in brain tissue and reached the lowest level at 24 h after SAH. In addition, the expression of Myelin Basic Protein was downregulated and that of anti-hypophosphorylated neurofilament H (N52) was upregulated after SAH. In experiments three and four, Rufy3 overexpression (LV-Rufy3) increased the interactions between Rufy3 and Rap1, the level of Rap1-GTP, and the ratio of Rap1-GTP/total GTP. In addition, LV-Rufy3 treatment inhibited axon injury and accelerated axon repair by activating the Rap1/Arap3/Rho/Fascin signaling pathway accompanied by upregulated protein expression levels of ARAP3, Rho, Fascin, and Facin. LV-Rufy3 also enhanced synaptic plasticity by activating the Rap1/MEK/ERK/synapsin I signaling pathway accompanied by upregulated protein expression levels of ERK1, p-ERK1, MEK1, p-MEK1, synaspin I, and p-synaspin I. Moreover, LV-Rufy3 also alleviated brain damage indicators, including cortical neuronal cell apoptosis and degeneration, brain edema, and cognitive impairment after SAH. However, the downregulation of Rufy3 had the opposite effect and aggravated EBI induced by SAH. Notably, the combined application of LV-Rufy3 and 8p-CPT showed a significant synergistic effect on the aforementioned parameters. Our findings suggest that enhanced Rufy3 expression may reduce EBI by inhibiting axon injury and promoting neuronal axon repair and synaptic plasticity after SAH.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Animais , Apoptose , Axônios/metabolismo , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Plasticidade Neuronal , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/genética
19.
Cell Death Dis ; 13(4): 321, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395832

RESUMO

Neuronal mitochondrial dynamics are disturbed after ischemic stroke. Optic atrophy 1 (OPA1) and its GTPase activity are involved in maintaining mitochondrial cristae and inner membrane fusion. This study aimed to explore the role of OMA1-mediated OPA1 cleavage (S1-OPA1) in neurons exposed to cerebral ischemia and reperfusion. After oxygen-glucose deprivation (OGD) for 60 min, we found that mitochondrial fragmentation occurred successively in the axon and soma of neurons, accompanied by an increase in S1-OPA1. In addition, S1-OPA1 overexpression significantly aggravated mitochondrial damage in neurons exposed to OGD for 60 min and 24 h after OGD/R, characterized by mitochondrial fragmentation, decreased mitochondrial membrane potential, mitochondrial cristae ultrastructural damage, increased superoxide production, decreased ATP production and increased mitochondrial apoptosis, which was inhibited by the lysine 301 to alanine mutation (K301A). Furthermore, we performed neuron-specific overexpression of S1-OPA1 in the cerebral cortex around ischemia of middle cerebral artery occlusion/reperfusion (MCAO/R) mice. The results further demonstrated in vivo that S1-OPA1 exacerbated neuronal mitochondrial ultrastructural destruction and injury induced by cerebral ischemia-reperfusion, while S1-OPA1-K301 overexpression had no effect. In conclusion, ischemia induced neuronal OMA1-mediated cleavage of OPA1 at the S1 site. S1-OPA1 aggravated neuronal mitochondrial fragmentation and damage in a GTPase-dependent manner, and participated in neuronal ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica , GTP Fosfo-Hidrolases , Mitocôndrias , Neurônios , Traumatismo por Reperfusão , Animais , Apoptose , Isquemia Encefálica/genética , GTP Fosfo-Hidrolases/genética , Glucose , Isquemia , Camundongos , Mitocôndrias/patologia , Traumatismo por Reperfusão/genética
20.
Brain Res Bull ; 183: 184-200, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35304287

RESUMO

Subarachnoid hemorrhage (SAH) is a hemorrhagic stroke with a high mortality and disability rate. Nitric oxide (NO) can promote blood supply through vasodilation, leading to protein S-nitrosylation. However, the function of S-nitrosylation in neurons after SAH remains unclear. Excessive NO in the pathological state is converted into S-nitrosoglutathione (GSNO) and stored in cells, which leads to high S-nitrosylation of intracellular proteins and causes nitrosative stress. S-nitrosoglutathione reductase (GSNOR) promotes GSNO degradation and protects cells from excessive S-nitrosylation. We conducted an in vivo rat carotid puncture model and an in vitro neuron hemoglobin intervention. The results showed that SAH induction increased NO, GSNO, neuron protein S-nitrosylation, and neuronal apoptosis, while decreasing the level and activity of GSNOR. GSNOR overexpression by lentivirus decreased GSNO but had little effect on NO. GSNOR overexpression also improved short- and long-term neurobehavioral outcomes in rats and alleviated nitrosative stress. Furthermore, GSNOR reduced neuronal apoptosis and played a neuroprotective role by alleviating Drp1 S-nitrosylation, reducing mitochondrial division. Thus, the regulation of GSNOR in early brain injury and neuronal denitrosylation may play an important role in neuroprotection.


Assuntos
Oxirredutases , Hemorragia Subaracnóidea , Aldeído Oxirredutases/metabolismo , Animais , Apoptose , Óxido Nítrico/metabolismo , Ratos , S-Nitrosoglutationa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA