Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473452

RESUMO

Enhancing the mechanical properties of conventional ceramic particles-reinforced aluminum (Al 1060) metal matrix composites (AMCs) with lower detrimental phases is difficult. In this research work, AMCs are reinforced with graphene nanosheet (GNS) and hybrid reinforcement (GNS combined with 20% SiC, synthesized by shift-speed ball milling (SSBM), and further fabricated by two-pass friction stir processing (FSP). The effect of GNS content and the addition of SiC on the microstructure and mechanical properties of AMCs are studied. The microstructure, elemental, and phase composition of the developed composite are examined using SEM, EDS, and XRD techniques, respectively. Mechanical properties such as hardness, wear, and tensile strength are analyzed. The experimental results show that the GNS and the SiC are fairly distributed in the Al matrix via SSBM, which is beneficial for the mechanical properties of the composites. The maximum tensile strength of the composites is approximately 171.3 MPa in AMCs reinforced by hybrid reinforcements. The tensile strength of the GNS/Al composites increases when the GNS content increases from 0 to 1%, but then reduces with the further increase in GNS content. The hardness increases by 2.3%, 24.9%, 28.9%, and 41.8% when the Al 1060 is reinforced with 0.5, 1, 2% GNS, and a hybrid of SiC and GNS, respectively. The SiC provides further enhancement of the hardness of AMCs reinforced by GNS. The coefficient of friction decreases by about 7%, 13%, and 17% with the reinforcement of 0.5, 1, and 2% GNS, respectively. Hybrid reinforcement has the lowest friction coefficient (0.41). The decreasing friction coefficient contributes to the self-lubrication of GNSs, the reduction in the contact area with the substrate, and the load-bearing ability of ceramic particles. According to this study, the strengthening mechanisms of the composites may be due to thermal mismatch, grain refinement, and Orowan looping. In summary, such hybrid reinforcements effectively improve the mechanical and tribological properties of the composites.

2.
Materials (Basel) ; 16(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37570191

RESUMO

In recent years, lattice structures produced via additive manufacturing have been increasingly investigated for their unique mechanical properties and the flexible and diverse approaches available to design them. The design of a strut with variable cross-sections in a lattice structure is required to improve the mechanical properties. In this study, a lattice structure design method based on a strut cross-section composed of a mixture of three ellipses named a tri-directional elliptical cylindrical section (TEC) is proposed. The lattice structures were fabricated via the selective laser melting of 316L alloy. The finite element analysis results show that the TEC strut possessed the high mechanical properties of lattice structures. Compression experiments confirmed that the novel lattice structure with the TEC strut exhibited increases in the elastic modulus, compressive yield strength, and energy absorption capacity of 24.99%, 21.66%, and 20.50%, respectively, compared with the conventional lattice structure at an equal level of porosity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA