Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 15(3): 1417-1430, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224157

RESUMO

This study investigated the non-inferiority of feeding term healthy infants with enriched formula milk powder containing 1,3-dioleoyl-2-palmitoylglycerol (OPO) and milk fat globular membrane (MFGM), compared to breast milk, in terms of the formation of gut microbiota, neurodevelopment and growth. Infants were divided into three groups: breast milk group (BMG, N = 50), fortified formula group (FFG, N = 17), and regular formula group (RFG, N = 12), based on the feeding pattern. Growth and development information was collected from the infants at one month, four months, and six months after the intervention. Fecal samples were collected from infants and analyzed for gut microbiota using 16S ribosomal DNA identification. The study found that at the three time points, the predominant bacterial phyla in FFG and BMG were Proteobacteria, Firmicutes, and Bacteroidetes, which differed from RFG. The abundance of Bifidobacterium in the RFG was lower than the FFG (one month, p = 0.019) and BMG (four months, p = 0.007). The abundance of Methanoprebacteria and so on (genus level) are positively correlated with bone mineral density (BMD) of term infants, and have the potential to be biomarkers for predicting BMD. The abundance of beta-galactosidase, a protein that regulates lactose metabolism and sphingoid metabolism, was higher in FFG (six months, p = 0.0033) and BMG (one month, p = 0.0089; four months, p = 0.0005; six months, p = 0.0005) than in the RFG group, which may be related to the superior bone mineral density and neurodevelopment of infants in the FFG and BMG groups than in the RFG group. Our findings suggest that formula milk powder supplemented with OPO and MFGM is a viable alternative to breastfeeding, providing a practical alternative for infants who cannot be breastfed for various reasons.


Assuntos
Aleitamento Materno , Microbioma Gastrointestinal , Lactente , Feminino , Humanos , Pós , Fórmulas Infantis , Leite Humano , Fezes/microbiologia
2.
Front Microbiol ; 13: 923273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847070

RESUMO

The gut microbiota plays a key role in the pathogenesis of diseases affecting preterm infants and gestational age is one of the important factors which affect the gut microbiota of infants. To determine the characteristics of the gut microbiota in preterm infants of different gestational ages from birth to 1 year after birth, we collected 622 fecal samples from neonates of different gestational ages at different time points after birth. According to the gestational ages, the samples were divided into four groups, extremely preterm, very preterm, moderate to late preterm, and term group. Meconium and fecal samples at day 14, 28, 120, and 365 after birth were collected. 16S rRNA sequencing was performed and the composition and structure of the gut microbiota in preterm infants of different gestational age was compared with that of term infants. In our study, alpha diversity of meconium in extremely preterm group was higher than very preterm group, moderate to late preterm group and term group and alpha diversity of meconium in preterm group was decreased with increasing of gestational age. At day 14 to day 120 after birth, alpha diversity of term and moderate to late preterm group were significantly higher than other two preterm groups. However, moderate to late preterm group owned the highest alpha diversity which was higher than term group at day 365 after birth. Besides, the results shown the duration of opportunistic pathogen such as Klebsiella and Enterococcus which dominant colonization was different in different gestational age groups. As well as the probiotics, such as Bifidobacterium, which abundance enriched at different time point in different gestational age groups. We profiled the features of dynamic changes of gut microbiome from different gestational ages infants. The results of our research provide new insights for individualized interventions of specific microbes of preterm infants with different gestational ages at different time points after birth.

3.
Nutrients ; 14(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35565868

RESUMO

Microbial colonization of very preterm (VPT) infants is detrimentally affected by the complex interplay of physiological, dietary, medical, and environmental factors. The aim of this study was to evaluate the effects of an infant formula containing the specific prebiotic mixture of scGOS/lcFOS (9:1) and glycomacropeptide (GMP) on the composition and function of VPT infants' gut microbiota. Metagenomic analysis was performed on the gut microbiota of VPT infants sampled at four time points: 24 h before the trial and 7, 14, and 28 days after the trial. Functional profiling was aggregated into gut and brain modules (GBMs) and gut metabolic modules (GMMs) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Enterococcus faecium, Escherichia coli, Klebsiella aerogenes, and Klebsiella pneumoniae were dominant species in both the test group and the control group. After the 4-week intervention, the abundance of Bifidobacterium in the test group was significantly increased. We found two GBMs (quinolinic acid synthesis and kynurenine degradation) and four GMMs (glutamine degradation, glyoxylate bypass, dissimilatory nitrate reduction, and preparatory phase of glycolysis) were significantly enriched in the test group, respectively. The results of this study suggested that formula enriched with scGOS/lcFOS (9:1) and GPM is beneficial to the intestinal microecology of VPT infants.


Assuntos
Microbioma Gastrointestinal , Caseínas , Fezes/microbiologia , Humanos , Lactente , Fórmulas Infantis , Recém-Nascido , Recém-Nascido Prematuro , Oligossacarídeos/farmacologia , Fragmentos de Peptídeos , Prebióticos/análise
4.
Gut ; 71(12): 2451-2462, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35387876

RESUMO

OBJECTIVE: Fetal growth restriction (FGR) is a devastating pregnancy complication that increases the risk of perinatal mortality and morbidity. This study aims to determine the combined and relative effects of genetic and intrauterine environments on neonatal microbial communities and to explore selective FGR-induced gut microbiota disruption, metabolic profile disturbances and possible outcomes. DESIGN: We profiled and compared the gut microbial colonisation of 150 pairs of twin neonates who were classified into four groups based on their chorionicity and discordance of fetal birth weight. Gut microbiota dysbiosis and faecal metabolic alterations were determined by 16S ribosomal RNA and metagenomic sequencing and metabolomics, and the long-term effects were explored by surveys of physical and neurocognitive development conducted after 2~3 years of follow-up. RESULTS: Adverse intrauterine environmental factors related to selective FGR dominate genetics in their effects of elevating bacterial diversity and altering the composition of early-life gut microbiota, and this effect is positively related to the severity of selective FGR in twins. The influence of genetic factors on gut microbes diminishes in the context of selective FGR. Gut microbiota dysbiosis in twin neonates with selective FGR and faecal metabolic alterations features decreased abundances of Enterococcus and Acinetobacter and downregulated methionine and cysteine levels. Correlation analysis indicates that the faecal cysteine level in early life is positively correlated with the physical and neurocognitive development of infants. CONCLUSION: Dysbiotic microbiota profiles and pronounced metabolic alterations are associated with selective FGR affected by adverse intrauterine environments, emphasising the possible effects of dysbiosis on long-term neurobehavioural development.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido , Gravidez , Lactente , Feminino , Humanos , Disbiose , Cisteína/farmacologia , RNA Ribossômico 16S/genética , Metaboloma , Fezes/microbiologia
5.
Front Nutr ; 9: 753919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399671

RESUMO

Background and Aims: This study aimed to detect breast milk sialic acid (SA) content and the changing pattern, to understand the various stages of breastfeeding SA secretion, and the influence factors of the human milk SA content. Methods: We recruited mothers and their infants as our subjects. At days 7, 14, 30, 120, and 365 after delivery, the contents of SA in breast milk were collected and detected through Fluorescence Detector-High Performance Liquid Chromatography. The participants completed the baseline questionnaire at ≤day 7 and were followed up at days 30, 120, and 365. Results: A total of 95 mothers with 122 infants were included in the analysis, including 22 mothers with 22 term infants, 25 mothers with 35 late preterm infants, 31 mothers with 39 very preterm infants, and 17 mothers with 26 extremely preterm infants. Similar to previous findings, the results of the study showed that, compared with breast milk of term mothers at the same period, breast milk of preterm mothers contained more SA at each time node, and the content of SA in breast milk increased with decreasing gestational weeks. Moreover, maternal age, pre-pregnancy BMI, and delivery mode had significant effects on total SA in breast milk, especially for the preterm infant breast milk. Significant negative associations occurred between SA contents and infant growth status, especially in preterm infants. Conclusions: We have confirmed the previous observations showing that with the prolongation of lactation time, the content of SA in breast milk gradually decreased, and the content of SA in the breast milk of preterm mothers was higher than that of term mothers. In addition, SA content was associated with maternal age, pre-pregnancy BMI, and delivery mode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA