Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 168: 107813, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086141

RESUMO

This paper intends to investigate the feasibility of peripheral artery disease (PAD) diagnosis based on the analysis of non-invasive arterial pulse waveforms. We generated realistic synthetic arterial blood pressure (BP) and pulse volume recording (PVR) waveform signals pertaining to PAD present at the abdominal aorta with a wide range of severity levels using a mathematical model that simulates arterial blood circulation and arterial BP-PVR relationships. We developed a deep learning (DL)-enabled algorithm that can diagnose PAD by analyzing brachial and tibial PVR waveforms, and evaluated its efficacy in comparison with the same DL-enabled algorithm based on brachial and tibial arterial BP waveforms as well as the ankle-brachial index (ABI). The results suggested that it is possible to detect PAD based on DL-enabled PVR waveform analysis with adequate accuracy, and its detection efficacy is close to when arterial BP is used (positive and negative predictive values at 40 % abdominal aorta occlusion: 0.78 vs 0.89 and 0.85 vs 0.94; area under the ROC curve (AUC): 0.90 vs 0.97). On the other hand, its efficacy in estimating PAD severity level is not as good as when arterial BP is used (r value: 0.77 vs 0.93; Bland-Altman limits of agreement: -32%-+32 % vs -20%-+19 %). In addition, DL-enabled PVR waveform analysis significantly outperformed ABI in both detection and severity estimation. In sum, the findings from this paper suggest the potential of DL-enabled non-invasive arterial pulse waveform analysis as an affordable and non-invasive means for PAD diagnosis.


Assuntos
Aprendizado Profundo , Doença Arterial Periférica , Humanos , Doença Arterial Periférica/diagnóstico , Índice Tornozelo-Braço , Pressão Sanguínea , Valor Preditivo dos Testes
2.
IEEE Access ; 9: 127433-127443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35382437

RESUMO

This paper presents a novel deep learning-based arterial pulse wave analysis (PWA) approach to diagnosis of peripheral artery occlusive disease (PAD). Naïve application of deep learning to PAD diagnosis can be hampered by the fact that securing a large amount of longitudinal dataset encompassing diverse PAD severity as well as anatomical and physiological variability presents formidable challenge. Training of a deep neural network (DNN) to a small training dataset raises the risk of overfitting the PAD diagnosis algorithm only to the individuals in the training dataset while deteriorating its ability to generalize also to other individuals who may exhibit a large variability in anatomical and physiological characteristics beyond the training dataset. To overcome these obstacles, we propose a continuous property-adversarial regularization (CPAR) approach to robust generalization of a DNN against scarce datasets. Our approach fosters the exploitation of latent features that can facilitate the intended task independently of confounding property-induced disturbances. by regularizing the extraction of disturbance-dependent latent features in the network's feature extraction layer. By training and testing a deep convolutional neural network (CNN) for PAD diagnosis using scarce virtual datasets, we illustrated that the CNN trained by our approach was superior to a conventionally trained CNN in detecting and assessing the severity of PAD against disturbances originating from diversity in the patients' height and arterial stiffness: when trained with one-time pulse wave signal measurement at ankle and brachial arteries in a small number of patients, our approach achieved detection accuracy of >90% and severity assessment of 0.83 in r2 value, which were >15% and >40% improvement over conventional approach without CPAR. In addition, we ascertained the advantage of our approach in efficient training and robust generalization of DNN by contrasting it to multi-task learning which promotes the exploitation (as opposed to regularization in CPAR) of disturbance-dependent latent features in fulfilling the intended tasks.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32714911

RESUMO

Toward the ultimate goal of affordable and non-invasive screening of peripheral occlusive artery disease (PAD), the objective of this work is to investigate the potential of deep learning-based arterial pulse waveform analysis in detecting and assessing the severity of PAD. Using an established transmission line model of arterial hemodynamics, a large number of virtual patients associated with PAD of a wide range of severity and the corresponding arterial pulse waveform data were created. A deep convolutional neural network capable of detecting and assessing the severity of PAD based on the analysis of brachial and ankle arterial pulse waveforms was constructed, evaluated for efficacy, and compared with the state-of-the-art ankle-brachial index (ABI) using the virtual patients. The results suggested that deep learning may diagnose PAD more accurately and robustly than ABI. In sum, this work demonstrates the initial proof-of-concept of deep learning-based arterial pulse waveform analysis for affordable and convenient PAD screening as well as presents challenges that must be addressed for real-world clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA