Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 221: 98-110, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38754743

RESUMO

Photodynamic therapy is a noninvasive treatment in which specific photosensitizers and light are used to produce high amounts of reactive oxygen species (ROS), which can be employed for targeted tissue destruction in cancer treatment or antimicrobial therapy. However, it remains unknown whether lower amounts of ROS produced by mild photodynamic therapy increase lifespan and stress resistance at the organism level. Here, we introduce a novel photodynamic treatment (PDTr) that uses 20 µM hypericin, a photosensitizer that originates from Hypericum perforatum, and orange light (590 nm, 5.4 W/m2, 1 min) to induce intracellular ROS formation (ROS), thereby resulting in lifespan extension and improved stress resistance in C. elegans. The PDTr-induced increase in longevity was abrogated by N-acetyl cysteine, suggesting the hormetic response was driven by prooxidative mechanisms. PDTr activated the translocation of SKN-1/NRF-2 and DAF-16/FOXO, leading to elevated expression of downstream oxidative stress-responsive genes, including ctl-1, gst-4, and sod-3. In summary, our findings suggest a novel PDTr method that extends the lifespan of C. elegans under both normal and oxidative stress conditions through the activation of SKN-1 and DAF-16 via the involvement of many antioxidant genes.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidade , Estresse Oxidativo , Perileno , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Fatores de Transcrição , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Estresse Oxidativo/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perileno/análogos & derivados , Perileno/farmacologia , Antracenos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Luz , Acetilcisteína/farmacologia
2.
Nutrients ; 14(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558561

RESUMO

Oocyte quality is essential for reproductive capacity, but it rapidly declines with age. In addition to aging, maternal nutrition is a major concern in maintaining oocyte quality. Gliadin, a major component of gluten, causes gluten toxicity, which has been reported in a variety of gluten-related disorders. The basis of gluten toxicity in reproduction is being understood using simple animal models such as Caenorhabditis elegans. In this study, we examined the effects of gliadin peptide (GP; amino acids 151-170) intake on oocyte quality control in C. elegans. We found that GP intake impaired oocyte quality through chromosomal aberrations and mitochondrial oxidative stress, which was suppressed by antioxidant treatment. The reduced oocyte quality by GP intake consequently increased embryonic lethality. Furthermore, the expression of oxidative stress-responding genes prdx-3 and gst-4 was significantly increased by GP intake. The increased DAF-16 activity by GP intake suggests that DAF-16 is a possible transactivator of these antioxidant genes. Taken together, GP intake reduced reproductive capacity in C. elegans by decreasing oocyte quality and increasing embryonic lethality through mitochondrial oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Antioxidantes/farmacologia , Gliadina/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estresse Oxidativo , Oócitos/metabolismo , Aberrações Cromossômicas , Longevidade , Fatores de Transcrição Forkhead/metabolismo
3.
Cell Prolif ; 55(10): e13288, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35768997

RESUMO

OBJECTIVE: As a component of Endosomal Sorting Complex Required for Transport (ESCRT) complex I, the tumor susceptibility gene 101 (Tsg101) carries out multiple functions. In this work, we report that oocyte-specific deletion of tumor susceptibility gene 101 (Tsg101) leads to age-dependent oocyte demise in mice. MATERIALS AND METHOD: Tsg101 floxed mice (Tsg101f/f ) were bred with Zp3cre transgenic mice to examine oocyte-specific roles of Tsg101. Multiple cellular and molecular biological approaches were taken to examine what leads to oocyte demise in the absence of Tsg101. RESULTS: The death of oocytes from Zp3cre /Tsg101f/f (Tsg101d/d thereafter) mice showed a strong correlation with sexual maturation, as gonadotropin-releasing hormone antagonist injections improved the survival rate of oocytes from 5-week-old Tsg101d/d mice. Maturation of oocytes from prepubertal Tsg101d/d mice proceeded normally, but was largely abnormal in oocytes from peripubertal Tsg101d/d mice, showing shrinkage or rupture. Endolysosomal structures in oocytes from peripubertal Tsg101d/d mice showed abnormalities, with aberrant patterns of early and late endosomal markers and a high accumulation of lysosomes. Dying oocytes showed plasma membrane blebs and leakage. Blockage of endocytosis in oocytes at 4°C prevented cytoplasmic shrinkage of oocytes from Tsg101d/d mice until 9 h. The depletion of tsg-101 in Caenorhabditis elegans increased the permeability of oocytes and embryos, suggesting a conserved role of Tsg101 in maintaining membrane integrity. CONCLUSIONS: Collectively, Tsg101 plays a dual role in maintaining the integrity of membranous structures, which is influenced by age in mouse oocytes.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Oócitos , Animais , Proteínas de Ligação a DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Hormônio Liberador de Gonadotropina , Camundongos , Camundongos Transgênicos , Fatores de Transcrição
4.
Antioxidants (Basel) ; 11(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35624814

RESUMO

In recent decades, maternal age at first birth has increased, as has the risk of infertility due to rapidly declining oocyte quality with age. Therefore, an understanding of female reproductive aging and the development of potential modulators to control oocyte quality are required. In this study, we investigated the effects of 3,3'-diindolylmethane (DIM), a natural metabolite of indole-3-cabinol found in cruciferous vegetables, on fertility in a Caenorhabditis elegans model. C. elegans fed DIM showed decreased mitochondrial dysfunction, oxidative stress, and chromosomal aberrations in aged oocytes, and thus reduced embryonic lethality, suggesting that DIM, a dietary natural antioxidant, improves oocyte quality. Furthermore, DIM supplementation maintained germ cell apoptosis (GCA) and germ cell proliferation (GCP) in a CEP-1/p53-dependent manner in a reproductively aged C. elegans germ line. DIM-induced GCA was mediated by the CEP-1-EGL-1 pathway without HUS-1 activation, suggesting that DIM-induced GCA is different from DNA damage-induced GCA in the C. elegans germ line. Taken together, we propose that DIM supplementation delays the onset of reproductive aging by maintaining the levels of GCP and GCA and oocyte quality in a reproductively aged C. elegans.

5.
Nutrients ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34444677

RESUMO

Caffeine, a methylxanthine derived from plants, is the most widely consumed ingredient in daily life. Therefore, it is necessary to investigate the effects of caffeine intake on essential biological activities. In this study, we attempted to determine the possible anti-aging effects of long-term caffeine intake in the intestine of an aged Caenorhabditis elegans model. We examined changes in intestinal integrity, production of vitellogenin (VIT), and mitochondrial function after caffeine intake. To evaluate intestinal aging, actin-5 (ACT-5) mislocalization, lumenal expansion, and intestinal colonization were examined after caffeine intake, and the levels of vitellogenesis as well as the mitochondrial activity were measured. We found that the long-term caffeine intake (10 mM) in the L4-stage worms at 25 °C for 3 days suppressed ACT-5 mislocalization. Furthermore, the level of autophagy, which is normally increased in aging animals, was significantly reduced in these animals, and their mitochondrial functions improved after caffeine intake. In addition, the caffeine-ingesting aging animals showed high resistance to oxidative stress and increased the expression of antioxidant proteins. Taken together, these findings reveal that caffeine may be a potential anti-aging agent that can suppress intestinal atrophy during the progression of intestinal aging.


Assuntos
Envelhecimento/fisiologia , Caenorhabditis elegans/fisiologia , Cafeína/administração & dosagem , Intestinos/fisiologia , Mitocôndrias/fisiologia , Vitelogênese/efeitos dos fármacos , Actinas/análise , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/efeitos dos fármacos , Intestinos/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos
6.
Nutrients ; 12(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143181

RESUMO

Caffeine intake is strongly linked to lipid metabolism. We previously reported the age-dependent physiological effects of caffeine intake in a Caenorhabditis elegans model. Since nutritional status can actively influence metabolism and overall health, in this study, we evaluated the effect of caffeine intake on lipid metabolism in adult-stage C. elegans. We found that, in C. elegans, fat storage and the level of phosphoethanolamine (PE) were significantly reduced with caffeine intake. In addition, mitochondrial activity decreased and mitochondrial morphology was disrupted, and the expression of oxidative stress response genes, hsp-6, gst-4, and daf-16, was induced by caffeine intake. Furthermore, the level of an energy metabolism sensor, phospho-AMP-activated protein kinase, was increased, whereas the expression of the sterol regulatory element binding protein gene and its target stearoyl-CoA desaturase genes, fat-5, -6, and -7, was decreased with caffeine intake. These findings suggest that caffeine intake causes mitochondrial dysfunction and reduces lipogenesis. Interestingly, these changes induced by caffeine intake were partially alleviated by PE supplementation, suggesting that the reduction in mitochondrial activity and lipogenesis is in part because of the low PE level, and proper dietary supplementation can improve organelle integrity.


Assuntos
Caenorhabditis elegans/metabolismo , Cafeína/farmacologia , Suplementos Nutricionais , Ingestão de Alimentos , Etanolaminas/farmacologia , Lipogênese/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Lipídeos , Mitocôndrias/efeitos dos fármacos
7.
Nutrients ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392893

RESUMO

During pregnancy, most women are exposed to caffeine, which is a widely consumed psychoactive substance. However, the consequences of maternal caffeine intake on the child remain largely unknown. Here, we investigated the intergenerational effects of maternal caffeine intake on offspring in a Caenorhabditis elegans model. We treated a young mother (P0) with 10 mM of caffeine equivalent to 2-5 cans of commercial energy drinks and examined its reproduction and growth rate from P0 to F2 generation. The fertility decreased and embryonic lethality increased by defective oocytes and eggshell integrity in caffeine-ingested mothers, and F1 larval development severely retarded. These results were due to decreased production of vitellogenin protein (yolk) in caffeine-ingested mothers. Furthermore, effects of RNA interference of vitellogenin (vit) genes, vit-1 to vit-6, in P0 mothers can mimic those by caffeine-ingested mothers. In addition, RNA interference (RNAi) depletion of unc-62 (human Meis homeobox), a transcriptional activator for vit genes, also showed similar effects induced by caffeine intake. Taken together, maternal caffeine intake reduced yolk production mediated by the UNC-62 transcription factor, thereby disrupting oocyte and eggshell integrity and retarding larval development. Our study suggests the clinical significance of caffeine intake for prospective mothers.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Cafeína/efeitos adversos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Modelos Animais , Reprodução/efeitos dos fármacos , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Feminino , Proteínas de Homeodomínio/fisiologia , Larva/genética , Oócitos/efeitos dos fármacos , Interferência de RNA , Reprodução/genética , Fatores de Transcrição/fisiologia , Vitelogeninas/genética , Vitelogeninas/metabolismo
8.
Biochem Biophys Res Commun ; 503(3): 2139-2145, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097270

RESUMO

Clinical attention to gluten-related disorders, such as celiac disease and nonceliac gluten sensitivity, is on the rise. However, identifying the pathophysiological mechanisms of gluten-related disorders remains elusive. Gliadin, a component of gluten, is known to play a major role in gluten toxicity. Caenorhabditis elegans has been widely used as the predominant experimental animal model to study toxicity and stress response in biomedical research. We investigated the stress response induced by gliadin intake in C. elegans to evaluate its toxicity and found brood size, body bending, and pumping rates to be significantly altered in response to gliadin. Notably, reactive oxygen species (ROS) production and Pgst-4::GFP transgene expression, an indicator of the oxidative-stress response, were significantly increased after gliadin intake. Reduced pumping rates were most likely caused by gliadin-induced oxidative stress, since pumping rates in oxidative stress-sensitive mev-1 mutants were more severely reduced than in oxidative stress-resistant daf-2 mutants following gliadin intake. Our results indicated that gluten/gliadin intake in C. elegans triggered ROS production and induced an oxidative stress response that reduced pumping rates and decreased brood size. We suggest C. elegans to be a useful model system for studying gluten/gliadin toxicity.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Gliadina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ração Animal , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Relação Dose-Resposta a Droga , Gliadina/metabolismo , Locomoção/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
Biochem Biophys Res Commun ; 482(4): 1213-1218, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27923661

RESUMO

Cell division cycle 25 (Cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression by activating cyclin-dependent kinases (Cdks) which are inactivated by Wee1/Myt1 kinases. It was previously reported that cdc-25.2 promotes oocyte maturation and intestinal cell divisions in Caenorhabditis elegans hermaphrodites. Here, we report a novel function of cdc-25.2 in male tail development which was significantly deformed by cdc-25.2 RNAi depletion and in cdc-25.2 mutant males. The deformation was also observed after RNAi depletion of other cell cycle regulators, cdk-1, cyb-3, cyd-1, and cyl-1. Furthermore, wee-1.3 counteracted cdc-25.2 in male tail development as observed in oocyte maturation and intestine development. The number of cells in ray precursor cell lineages was significantly reduced in cdc-25.2 depleted males. These results indicate that CDC-25.2 is essential for cell divisions in ray precursor cell lineages for proper male tail development.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Fosfoproteínas Fosfatases/fisiologia , Cauda/embriologia , Animais , Animais Geneticamente Modificados , Ciclo Celular , Divisão Celular , Linhagem da Célula , Quinases Ciclina-Dependentes/metabolismo , Perfilação da Expressão Gênica , Masculino , Morfogênese , Fenótipo , Interferência de RNA , Transgenes
10.
BMB Rep ; 50(1): 31-36, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27697105

RESUMO

High-dose caffeine uptake is a developmental stressor and causes food-avoidance behavior (aversion phenotype) in C. elegans, but its mode of action is largely unknown. In this study, we investigated the molecular basis of the caffeineinduced aversion behavior in C. elegans. We found that aversion phenotype induced by 30 mM caffeine was mediated by JNK/MAPK pathway, serotonergic and dopaminergic neuroendocrine signals. In this process, the dopaminergic signaling appears to be the major pathway because the reduced aversion behavior in cat-2 mutants and mutants of JNK/MAPK pathway genes was significantly recovered by pretreatment with dopamine. RNAi depletion of hsp-16.2, a cytosolic chaperone, and cyp-35A family reduced the aversion phenotype, which was further reduced in cat-2 mutants, suggesting that dopaminergic signal is indeed dominantly required for the caffeine-induced food aversion. Our findings suggest that aversion behavior is a defense mechanism for worms to survive under the high-dose caffeine conditions. [BMB Reports 2017; 50(1): 31-36].


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Cafeína/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistemas Neurossecretores/efeitos dos fármacos , Animais , Caenorhabditis elegans , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Sistemas Neurossecretores/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA