RESUMO
Introduction: There is little practical guidance about suitable food choices for higher natural protein tolerances in patients with phenylketonuria (PKU). This is particularly important to consider with the introduction of adjunct pharmaceutical treatments that may improve protein tolerance. Aim: To develop a set of guidelines for the introduction of higher protein foods into the diets of patients with PKU who tolerate >10 g/day of protein. Methods: In January 2022, a 26-item food group questionnaire, listing a range of foods containing protein from 5 to >20 g/100 g, was sent to all British Inherited Metabolic Disease Group (BIMDG) dietitians (n = 80; 26 Inherited Metabolic Disease [IMD] centres). They were asked to consider within their IMD dietetic team when they would recommend introducing each of the 26 protein-containing food groups into a patient's diet who tolerated >10 g to 60 g/day of protein. The patient protein tolerance for each food group that received the majority vote from IMD dietetic teams was chosen as its tolerance threshold for introduction. A virtual meeting was held using Delphi methodology in March 2022 to discuss and agree final consensus. Results: Responses were received from dietitians from 22/26 IMD centres (85%) (11 paediatric, 11 adult). For patients tolerating protein ≥15 g/day, the following foods were agreed for inclusion: gluten-free pastas, gluten-free flours, regular bread, cheese spreads, soft cheese, and lentils in brine; for protein tolerance ≥20 g/day: nuts, hard cheeses, regular flours, meat/fish, and plant-based alternative products (containing 5−10 g/100 g protein), regular pasta, seeds, eggs, dried legumes, and yeast extract spreads were added; for protein tolerance ≥30 g/day: meat/fish and plant-based alternative products (containing >10−20 g/100 g protein) were added; and for protein tolerance ≥40 g/day: meat/fish and plant-based alternatives (containing >20 g/100 g protein) were added. Conclusion: This UK consensus by IMD dietitians from 22 UK centres describes for the first time the suitability and allocation of higher protein foods according to individual patient protein tolerance. It provides valuable guidance for health professionals to enable them to standardize practice and give rational advice to patients.
Assuntos
Fenilcetonúrias , Animais , Consenso , Dieta , Carne , Reino UnidoRESUMO
There is an increasing number of adults and elderly patients with phenylketonuria (PKU) who are either early, late treated, or untreated. The principal treatment is a phenylalanine-restricted diet. There is no established UK training for dietitians who work with adults within the specialty of Inherited Metabolic Disorders (IMDs), including PKU. To address this, a group of experienced dietitians specializing in IMDs created a standard operating procedure (SOP) on the dietetic management of adults with PKU to promote equity of care in IMD dietetic services and to support service provision across the UK. The group met virtually over a period of 12 months until they reached 100% consensus on the SOP content. Areas of limited evidence included optimal blood phenylalanine reporting times to patients, protein requirements in older adults, management of weight and obesity, and management of disordered eating and eating disorders. The SOP does not include guidance on maternal PKU management. The SOP can be used as a tool for training dietitians new to the specialty and to raise the standard of education and care for patients with PKU in the UK.
Assuntos
Dietética , Fenilcetonúrias , Idoso , Consenso , Humanos , Fenilalanina , Reino UnidoRESUMO
Introduction: Subtraction of ictal-interictal SPECT co-registered to MRI (SISCOM) is a quantification tool that can improve the sensitivity and specificity of the epileptogenic zone (EZ) localization. Commercially available image analysis software packages for SISCOM are costly, and Statistical Parametric Mapping (SPM) could be an alternative free software for the definition of the EZ. There are only a few studies that compare SISCOM using SPM (SISCOM-SPM) with visual analysis. Aim: To compare SISCOM-SPM vs. visual analysis for localization of the EZ in patients with pharmacoresistant focal epilepsies. Materials and methods: We evaluated all our patients with focal epilepsies that underwent ictal and interictal SPECT. We defined the reference standard to locate the EZ by pathology and follow-up (in patients submitted to surgery), or seizure semiology, serial EEG, long-term video-EEG, 18F-FDG PET/CT, and MRI (in patients who were not operated). We compared the location of the EZ by visual analysis of SPECT images and by SISCOM-SPM to the reference standard and classified as concordant, discordant, or partially concordant. Results: We included 23 patients. Visual analysis was concordant with the EZ reference standard in only 13 patients (56.5%), while SISCOM-SPM was concordant in 18 cases (78.3%), providing a 21.8% increase in the location of EZ. However, this difference was not significant due to the small sample size (p = 0.0856). Conclusion: Our preliminary results demonstrate that, in clinical practice, SISCOM-SPM has the potential to add information that might help localize the EZ compared to visual analysis. SISCOM-SPM has a lower cost than other commercially available SISCOM software packages, which is an advantage for developing countries. Studies with more patients are necessary to confirm our findings.
RESUMO
PREMISE OF THE STUDY: Single-nucleotide polymorphism (SNP) marker discovery in plants with complex allotetraploid genomes is often confounded by the presence of homeologous loci (along with paralogous and orthologous loci). Here we present a strategy to filter for SNPs representing orthologous loci. METHODS AND RESULTS: Using Illumina next-generation sequencing, 54 million reads were collected from restriction enzyme-digested DNA libraries of a diversity of Gossypium taxa. Loci with one to three SNPs were discovered using the Stacks software package, yielding 25,529 new cotton SNP combinations, including those that are polymorphic at both interspecific and intraspecific levels. Frequencies of predicted dual-homozygous (aa/bb) marker polymorphisms ranged from 6.7-11.6% of total shared fragments in intraspecific comparisons and from 15.0-16.4% in interspecific comparisons. CONCLUSIONS: This resource provides dual-homozygous (aa/bb) marker polymorphisms. Both in silico and experimental validation efforts demonstrated that these markers are enriched for single orthologous loci that are homozygous for alternative alleles.
RESUMO
BACKGROUND: Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. RESULTS: We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. CONCLUSIONS: Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via modern marker-assisted selection strategies.