Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Am J Public Health ; 112(12): 1721-1725, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302220

RESUMO

Vaccination remains key to reducing the risk of COVID-19-related severe illness and death. Because of historic medical exclusion and barriers to access, Black communities have had lower rates of COVID-19 vaccination than White communities. We describe the efforts of an academic medical institution to implement community-based COVID-19 vaccine clinics in medically underserved neighborhoods in Philadelphia, Pennsylvania. Over a 13-month period (April 2021-April 2022), the initiative delivered 9038 vaccine doses to community members, a majority of whom (57%) identified as Black. (Am J Public Health. 2022;112(12):1721-1725. https://doi.org/10.2105/AJPH.2022.307030).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Área Carente de Assistência Médica , COVID-19/epidemiologia , COVID-19/prevenção & controle , Philadelphia/epidemiologia , Vacinação
2.
ACS Chem Biol ; 16(4): 691-700, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33740380

RESUMO

The enterobacterial common antigen (ECA), a three-sugar repeat unit polysaccharide produced by Enterobacteriaceae family members, impacts bacterial outer membrane permeability, and its biosynthesis affects the glycan landscape of the organism. ECA synthesis impacts the production of other polysaccharides by reducing the availability of shared substrates, the most notable of which is the 55-carbon polyisoprenoid bactoprenyl phosphate (BP), which serves as a carrier for the production of numerous bacterial glycans including ECA, peptidoglycan, O-antigen, and more. Here, using a combination of in vitro enzymatic synthesis and liquid chromatography-mass spectrometry (LC-MS) analysis of bacterial lysates, we provide biochemical evidence for the effect on endogenous polyisoprenoid pools from cell culture that arises from glycan pathway disruption. In this work, we have cloned and expressed each gene involved in ECA repeat unit biosynthesis and reconstituted the pathway in vitro, providing LC-MS characterized standards for the investigation of cellular glycan-linked intermediates and BP. We then generated ECA deficient mutants in genes associated with production of the polysaccharide, which we suspected would accumulate materials identical to our standards. We found that indeed accumulated products from these cells were indistinguishable from our enzymatically prepared standards, and moreover we observed a concomitant decrease in cellular BP levels with each mutant. This work provides the first direct biochemical evidence for the sequestration of BP upon the genetic disruption of glycan biosynthesis pathways in bacteria. This work also provides methods for the direct assessment of both the ECA glycan, and a new understanding of the dynamic interdependence of the bacterial polysaccharide repertoire.


Assuntos
Antígenos de Bactérias/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Polissacarídeos/metabolismo , Especificidade por Substrato
3.
J Bacteriol ; 202(4)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31767777

RESUMO

Bacteria have a variety of mechanisms for adapting to environmental perturbations. Changes in oxygen availability result in a switch between aerobic and anaerobic respiration, whereas iron limitation may lead to siderophore secretion. In addition to metabolic adaptations, many organisms respond by altering their cell shape. Caulobacter crescentus, when grown under phosphate-limiting conditions, dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanistic details of stalk synthesis are not well characterized. We used a chemical mutagenesis approach to isolate and characterize stalk-deficient mutants, one of which had two mutations in the phosphomannose isomerase gene (manA) that were necessary and sufficient to inhibit stalk elongation. Transcription of the pho regulon was unaffected in the manA mutant; therefore, ManA plays a unique regulatory role in stalk synthesis. The mutant ManA had reduced enzymatic activity, resulting in a 5-fold increase in the intracellular fructose 6-phosphate/mannose 6-phosphate ratio. This metabolic imbalance impaired the synthesis of cellular envelope components derived from mannose 6-phosphate, namely, lipopolysaccharide O-antigen and exopolysaccharide. Furthermore, the manA mutations prevented C. crescentus cells from efficiently entering stationary phase. Deletion of the stationary-phase response regulator gene spdR inhibited stalk elongation in wild-type cells, while overproduction of the alarmone ppGpp, which triggers growth arrest and stationary-phase entry, increased stalk length in the manA mutant strain. These results demonstrate that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation.IMPORTANCE Metabolic control of bacterial cell shape is an important mechanism for adapting to environmental perturbations. Caulobacter crescentus dramatically elongates its polar stalk appendage in response to phosphate starvation. To investigate the mechanism of this morphological adaptation, we isolated stalk-deficient mutants, one of which had mutations in the phosphomannose isomerase gene (manA) that blocked stalk elongation, despite normal activation of the phosphate starvation response. The mutant ManA resulted in an imbalance in sugar-phosphate concentrations, which had effects on the synthesis of cellular envelope components and entry into stationary phase. Due to the interconnectivity of metabolic pathways, our findings may suggest more generally that the modulation of bacterial cell shape involves the regulation of growth phase and the synthesis of cellular building blocks.


Assuntos
Caulobacter crescentus/metabolismo , Manose-6-Fosfato Isomerase/fisiologia , Fosfatos/metabolismo , Açúcares/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/crescimento & desenvolvimento , Manose-6-Fosfato Isomerase/genética , Redes e Vias Metabólicas , Mutação , Polimorfismo de Nucleotídeo Único
4.
Mol Microbiol ; 112(1): 233-248, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31022322

RESUMO

Peptidoglycan (PG) is a highly cross-linked polysaccharide that encases bacteria, resists the effects of turgor and confers cell shape. PG precursors are translocated across the cytoplasmic membrane by the lipid carrier undecaprenyl phosphate (Und-P) where they are incorporated into the PG superstructure. Previously, we found that one of our Escherichia coli laboratory strains (CS109) harbors a missense mutation in uppS, which encodes an enzymatically defective Und-P(P) synthase. Here, we show that CS109 cells lacking the bifunctional aPBP PBP1B (penicillin binding protein 1B) lyse during exponential growth at elevated temperature. PBP1B lysis was reversed by: (i) reintroducing wild-type uppS, (ii) increasing the availability of PG precursors or (iii) overproducing PBP1A, a related bifunctional PG synthase. In addition, inhibiting the catalytic activity of PBP2 or PBP3, two monofunctional bPBPs, caused CS109 cells to lyse. Limiting the precursors required for Und-P synthesis in MG1655, which harbors a wild-type allele of uppS, also promoted lysis in mutants lacking PBP1B or bPBP activity. Thus, simultaneous inhibition of Und-P production and PG synthases provokes a synergistic response that leads to cell lysis. These findings suggest a biological connection that could be exploited in combination therapies.


Assuntos
Proteínas de Ligação às Penicilinas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Divisão Celular , Parede Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Fosfatos de Poli-Isoprenil/antagonistas & inibidores , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química
5.
J Bacteriol ; 200(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29986944

RESUMO

The peptidoglycan exoskeleton shapes bacteria and protects them against osmotic forces, making its synthesis the target of many current antibiotics. Peptidoglycan precursors are attached to a lipid carrier and flipped from the cytoplasm into the periplasm to be incorporated into the cell wall. In Escherichia coli, this carrier is undecaprenyl phosphate (Und-P), which is synthesized as a diphosphate by the enzyme undecaprenyl pyrophosphate synthase (UppS). E. coli MG1655 exhibits wild-type morphology at all temperatures, but one of our laboratory strains (CS109) was highly aberrant when grown at 42°C. This strain contained mutations affecting the Und-P synthetic pathway genes uppS, ispH, and idi Normal morphology was restored by overexpressing uppS or by replacing the mutant (uppS31) with the wild-type allele. Importantly, moving uppS31 into MG1655 was lethal even at 30°C, indicating that the altered enzyme was highly deleterious, but growth was restored by adding the CS109 versions of ispH and idi Purified UppSW31R was enzymatically defective at all temperatures, suggesting that it could not supply enough Und-P during rapid growth unless suppressor mutations were present. We conclude that cell wall synthesis is profoundly sensitive to changes in the pool of polyisoprenoids and that isoprenoid homeostasis exerts a particularly strong evolutionary pressure.IMPORTANCE Bacterial morphology is determined primarily by the overall structure of the semirigid macromolecule peptidoglycan. Not only does peptidoglycan contribute to cell shape, but it also protects cells against lysis caused by excess osmotic pressure. Because it is critical for bacterial survival, it is no surprise that many antibiotics target peptidoglycan biosynthesis. However, important gaps remain in our understanding about how this process is affected by peptidoglycan precursor availability. Here, we report that a mutation altering the enzyme that synthesizes Und-P prevents cells from growing at high temperatures and that compensatory mutations in enzymes functioning upstream of uppS can reverse this phenotype. The results highlight the importance of Und-P metabolism for maintaining normal cell wall synthesis and shape.


Assuntos
Alquil e Aril Transferases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mutação , Fosfatos de Poli-Isoprenil/biossíntese , Vias Biossintéticas , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Peptidoglicano/biossíntese
6.
J Bacteriol ; 200(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29686141

RESUMO

While screening the Pfam database for novel peptidoglycan (PG) binding modules, we identified the OapA domain, which is annotated as a LysM-like domain. LysM domains bind PG and mediate localization to the septal ring. In the Gram-negative bacterium Escherichia coli, an OapA domain is present in YtfB, an inner membrane protein of unknown function but whose overproduction causes cells to filament. Together, these observations suggested that YtfB directly affects cell division, most likely through its OapA domain. Here, we show that YtfB accumulates at the septal ring and that its action requires the division-initiating protein FtsZ and, to a lesser extent, ZipA, an early recruit to the septalsome. While the loss of YtfB had no discernible impact, a mutant lacking both YtfB and DedD (a known cell division protein) grew as filamentous cells. The YtfB OapA domain by itself also localized to sites of division, and this localization was enhanced by the presence of denuded PGs. Finally, the OapA domain bound PG, though binding did not depend on the formation of denuded glycans. Collectively, our findings demonstrate that YtfB is a cell division protein whose function is related to cell wall hydrolases.IMPORTANCE All living cells must divide in order to thrive. In bacteria, this involves the coordinated activities of a large number of proteins that work in concert to constrict the cell. Knowing which proteins contribute to this process and how they function is fundamental. Here, we identify a new member of the cell division apparatus in the Gram-negative bacterium Escherichia coli whose function is related to the generation of a transient cell wall structure. These findings deepen our understanding of bacterial cell division.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Ciclo Celular/genética , Parede Celular/genética , Parede Celular/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Peptidoglicano/metabolismo , Domínios Proteicos
7.
J Bacteriol ; 199(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096447

RESUMO

Peptidoglycan is a vital component of nearly all cell wall-bearing bacteria and is a valuable target for antibacterial therapy. However, despite decades of work, there remain important gaps in understanding how this macromolecule is synthesized and molded into a three-dimensional structure that imparts specific morphologies to individual cells. Here, we investigated the particularly enigmatic area of how peptidoglycan is synthesized and shaped during the first stages of creating cell shape de novo, that is, in the absence of a preexisting template. We found that when lysozyme-induced (LI) spheroplasts of Escherichia coli were allowed to resynthesize peptidoglycan, the cells divided first and then elongated to recreate a normal rod-shaped morphology. Penicillin binding protein 1B (PBP1B) was critical for the first stage of this recovery process. PBP1B synthesized peptidoglycan de novo, and this synthesis required that PBP1B interact with the outer membrane lipoprotein LpoB. Surprisingly, when LpoB was localized improperly to the inner membrane, recovering spheroplasts synthesized peptidoglycan and divided but then propagated as amorphous spheroidal cells, suggesting that the regeneration of a normal rod shape depends on a particular spatial interaction. Similarly, spheroplasts carrying a PBP1B variant lacking transpeptidase activity or those in which PBP1A was overproduced could synthesize new peptidoglycan and divide but then grew as oddly shaped spheroids. We conclude that de novo cell wall synthesis requires the glycosyltransferase activity of PBP1B but that PBP1B transpeptidase activity is needed to assemble cell walls with wild-type morphology.IMPORTANCE Bacterial cell wall peptidoglycan is synthesized and modified by penicillin binding proteins (PBPs), which are targeted by about half of all currently prescribed antibiotics, including penicillin and its derivatives. Because antibiotic resistance is rising, it has become increasingly urgent that we fill the gaps in our knowledge about how PBPs create and assemble this protective wall. We report here that PBP1B plays an essential role in synthesizing peptidoglycan in the absence of a preexisting template: its glycosyltransferase activity is responsible for de novo synthesis, while its transpeptidase activity is required to construct cell walls of a specific shape. These results highlight the importance of this enzyme and distinguish its biological roles from those of other PBPs and peptidoglycan synthases.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Proliferação de Células , Proteínas de Escherichia coli/genética , Mutação , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano Glicosiltransferase/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Esferoplastos/fisiologia
8.
Nature ; 537(7622): 622-4, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27680934
9.
J Bacteriol ; 198(22): 3070-3079, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27573014

RESUMO

Undecaprenyl phosphate (Und-P) is a member of the family of essential polyprenyl phosphate lipid carriers and in the Gram-negative bacterium Escherichia coli is required for synthesizing the peptidoglycan (PG) cell wall, enterobacterial common antigen (ECA), O antigen, and colanic acid. Previously, we found that interruption of ECA biosynthesis indirectly alters PG synthesis by sequestering Und-P via dead-end intermediates, causing morphological defects. To determine if competition for Und-P was a more general phenomenon, we determined if O-antigen intermediates caused similar effects. Indeed, disrupting the synthesis of O antigen or the lipopolysaccharide core oligosaccharide induced cell shape deformities, which were suppressed by preventing the initiation of O-antigen biosynthesis or by manipulating Und-P metabolism. We conclude that accumulation of O-antigen intermediates alters PG synthesis by sequestering Und-P. Importantly, many previous experiments addressed the physiological functions of various oligosaccharides and glycoconjugates, but these studies employed mutants that accumulate deleterious intermediates. Thus, conclusions based on these experiments must be reevaluated to account for possible indirect effects of Und-P sequestration. IMPORTANCE: Bacteria use long-chain isoprenoids like undecaprenyl phosphate (Und-P) as lipid carriers to assemble numerous glycan polymers that comprise the cell envelope. In any one bacterium, multiple oligosaccharide biosynthetic pathways compete for a common pool of Und-P, which means that disruptions in one pathway may produce secondary consequences that affect the others. Using the Gram-negative bacterium Escherichia coli as a model, we demonstrate that interruption of the biogenesis of O antigen, a major outer membrane component, indirectly impairs peptidoglycan synthesis by sequestering Und-P into dead-end intermediates. These results strongly argue that the functions of many Und-P-utilizing pathways must be reevaluated, because much of our current understanding is based on experiments that did not control for these unintended secondary effects.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/ultraestrutura , Lipopolissacarídeos/biossíntese , Antígenos O/biossíntese , Fosfatos de Poli-Isoprenil/metabolismo , Vias Biossintéticas , Parede Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/biossíntese
10.
mBio ; 7(3)2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27329754

RESUMO

UNLABELLED: Peptidoglycan (PG) is an essential structural component of the bacterial cell wall and maintains the integrity and shape of the cell by forming a continuous layer around the cytoplasmic membrane. The thin PG layer of Escherichia coli resides in the periplasm, a unique compartment whose composition and pH can vary depending on the local environment of the cell. Hence, the growth of the PG layer must be sufficiently robust to allow cell growth and division under different conditions. We have analyzed the PG composition of 28 mutants lacking multiple PG enzymes (penicillin-binding proteins [PBPs]) after growth in acidic or near-neutral-pH media. Statistical analysis of the muropeptide profiles identified dd-carboxypeptidases (DD-CPases) that were more active in cells grown at acidic pH. In particular, the absence of the DD-CPase PBP6b caused a significant increase in the pentapeptide content of PG as well as morphological defects when the cells were grown at acidic pH. Other DD-CPases (PBP4, PBP4b, PBP5, PBP6a, PBP7, and AmpH) and the PG synthase PBP1B made a smaller or null contribution to the pentapeptide-trimming activity at acidic pH. We solved the crystal structure of PBP6b and also demonstrated that the enzyme is more stable and has a lower Km at acidic pH, explaining why PBP6b is more active at low pH. Hence, PBP6b is a specialized DD-CPase that contributes to cell shape maintenance at low pH, and E. coli appears to utilize redundant DD-CPases for normal growth under different conditions. IMPORTANCE: Escherichia coli requires peptidoglycan dd-carboxypeptidases to maintain cell shape by controlling the amount of pentapeptide substrates available to the peptidoglycan synthetic transpeptidases. Why E. coli has eight, seemingly redundant dd-carboxypeptidases has remained unknown. We now show that one of these dd-carboxypeptidases, PBP6b, is important for cell shape maintenance in acidic growth medium, consistent with the higher activity and stability of the enzyme at low pH. Hence, the presence of multiple dd-carboxypeptidases with different enzymatic properties may allow E. coli to maintain a normal cell shape under various growth conditions.


Assuntos
Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Parede Celular/química , Escherichia coli/citologia , Escherichia coli/enzimologia , Peptidoglicano/análise , Carboxipeptidases/química , Cristalografia por Raios X , Meios de Cultura/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Deleção de Genes , Concentração de Íons de Hidrogênio , Cinética , Microscopia , Conformação Proteica
11.
J Bacteriol ; 198(8): 1230-40, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26833417

RESUMO

UNLABELLED: After losing their protective peptidoglycan, bacterial spheroplasts can resynthesize a cell wall to recreate their normal shape. In Escherichia coli, this process requires the Rcs response. In its absence, spheroplasts do not revert to rod shapes but instead form enlarged spheroids and lyse. Here, we investigated the reason for this Rcs requirement. Rcs-deficient spheroids exhibited breaks and bulges in their periplasmic spaces and failed to synthesize a complete peptidoglycan cell wall, indicating that the bacterial envelope was defective. To determine the Rcs-dependent gene(s) required for shape recovery, we tested spheroplasts lacking selected RcsB-regulated genes and found that colanic acid (CA) biosynthesis appeared to be involved. Surprisingly, though, extracellular CA was not required for recovery. Instead, lysis was caused by mutations that interrupted CA biosynthesis downstream of the initial glycosyl transferase, WcaJ. Deleting wcaJ prevented lysis of spheroplasts lacking ensuing steps in the pathway, and providing WcaJ in trans to a mutant lacking the entire CA operon triggered spheroplast enlargement and lysis. Thus, CA is not required for spheroplast recovery. Instead, CA intermediates accumulate as dead-end products which inhibit recovery of wall-less cells. The results strongly imply that CA may not be required for the survival E. coli L-forms. More broadly, these findings mandate that previous conclusions about the role of colanic acid in biofilm formation or virulence must be reevaluated. IMPORTANCE: Wall-less bacteria can resynthesize their walls and recreate a normal shape, which in Escherichia coli requires the Rcs response. While attempting to identify the Rcs-dependent gene required for shape recovery, we found that colanic acid (CA) biosynthesis appeared to be involved. Surprisingly, though, cell death was caused by mutations that interrupted CA biosynthesis downstream of the initial step in the pathway, creating dead-end compounds that inhibited recovery of wall-less cells. When testing for the biological role of CA, most previous experiments used mutants that would accumulate these deadly intermediates, meaning that all prior conclusions must be reexamined to determine if the results were caused by these lethal side effects instead of accurately reflecting the biological purpose of CA itself.


Assuntos
Escherichia coli/citologia , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Polissacarídeos/química
12.
Mol Microbiol ; 100(1): 1-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26593043

RESUMO

Bacterial morphology is determined primarily by the architecture of the peptidoglycan (PG) cell wall, a mesh-like layer that encases the cell. To identify novel mechanisms that create or maintain cell shape in Escherichia coli, we used flow cytometry to screen a transposon insertion library and identified a wecE mutant that altered cell shape, causing cells to filament and swell. WecE is a sugar aminotransferase involved in the biosynthesis of enterobacterial common antigen (ECA), a non-essential outer membrane glycolipid of the Enterobacteriaceae. Loss of wecE interrupts biosynthesis of ECA and causes the accumulation of the undecaprenyl pyrophosphate-linked intermediate ECA-lipid II. The wecE shape defects were reversed by: (i) preventing initiation of ECA biosynthesis, (ii) increasing the synthesis of the lipid carrier undecaprenyl phosphate (Und-P), (iii) diverting Und-P to PG synthesis or (iv) promoting Und-P recycling. The results argue that the buildup of ECA-lipid II sequesters part of the pool of Und-P, which, in turn, adversely affects PG synthesis. The data strongly suggest there is competition for a common pool of Und-P, whose proper distribution to alternate metabolic pathways is required to maintain normal cell shape in E. coli.


Assuntos
Antígenos de Bactérias/metabolismo , Escherichia coli/fisiologia , Redes e Vias Metabólicas , Fosfatos de Poli-Isoprenil/metabolismo , Antígenos de Bactérias/genética , Parede Celular/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genótipo , Mutação , Transaminases/genética , Transaminases/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
13.
BMC Microbiol ; 15: 14, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25650045

RESUMO

BACKGROUND: The Escherichia coli enzyme tryptophanase (TnaA) converts tryptophan to indole, which triggers physiological changes and regulates interactions between bacteria and their mammalian hosts. Tryptophanase production is induced by external tryptophan, but the activity of TnaA is also regulated by other, more poorly understood mechanisms. For example, the enzyme accumulates as a spherical inclusion (focus) at midcell or at one pole, but how or why this localization occurs is unknown. RESULTS: TnaA activity is low when the protein forms foci during mid-logarithmic growth but its activity increases as the protein becomes more diffuse, suggesting that foci may represent clusters of inactive (or less active) enzyme. To determine what protein characteristics might mediate these localization effects, we constructed 42 TnaA variants: 6 truncated forms and 36 missense mutants in which different combinations of 83 surface-exposed residues were converted to alanine. A truncated TnaA protein containing only domains D1 and D3 (D1D3) localized to the pole. Mutations affecting the D1D3-to-D1D3 interface did not affect polar localization of D1D3 but did delay assembly of wild type TnaA foci. In contrast, alterations to the D1D3-to-D2 domain interface produced diffuse localization of the D1D3 variant but did not affect the wild type protein. Altering several surface-exposed residues decreased TnaA activity, implying that tetramer assembly may depend on interactions involving these sites. Interestingly, changing any of three amino acids at the base of a loop near the catalytic pocket decreased TnaA activity and caused it to form elongated ovoid foci in vivo, indicating that the alterations affect focus formation and may regulate how frequently tryptophan reaches the active site. CONCLUSIONS: The results suggest that TnaA activity is regulated by subcellular localization and by a loop-associated occlusion of its active site. Equally important, these new TnaA variants are immediately available to the research community and should be useful for investigating how tryptophanase is localized and assembled, how substrate accesses its active site, the functional role of acetylation, and other structural and functional questions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Triptofanase/metabolismo , Substituição de Aminoácidos , Domínio Catalítico , Análise Mutacional de DNA , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Sequência , Triptofanase/genética
14.
Microbiology (Reading) ; 160(Pt 9): 2079-2088, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25061041

RESUMO

When Escherichia coli is grown in a medium lacking glucose or another preferred carbohydrate, the concentration of cAMP-cAMP receptor protein (cAMP-CRP) increases, and this latter complex regulates the expression of more than 180 genes. To respond rapidly to changes in carbohydrate availability, E. coli must maintain a suitable intracellular concentration of cAMP by either exporting or degrading excess cAMP. Currently, cAMP export via the TolC protein is thought to be more efficient at reducing these levels than is CpdA-mediated degradation of cAMP. Here, we compared the contributions of TolC and CpdA by measuring the expression of cAMP-regulated genes that encode tryptophanase (TnaA) and ß-galactosidase. In the presence of exogenous cAMP, a tolC mutant produced intermediate levels of these enzymes, suggesting that cAMP levels were held in check by CpdA. Conversely, a cpdA mutant produced much higher amounts of these enzymes, indicating that CpdA was more efficient than TolC at reducing cAMP levels. Surprisingly, expression of the tnaA gene halted rapidly when glucose was added to cells lacking both TolC and CpdA, even though under these conditions cAMP could not be removed by either pathway and tnaA expression should have remained high. This result suggests the existence of an additional mechanism that eliminates intracellular cAMP or terminates expression of some cAMP-CRP-regulated genes. In addition, adding glucose and other carbohydrates rapidly inhibited the function of pre-formed TnaA, indicating that TnaA is regulated by a previously unknown carbohydrate-dependent post-translational mechanism.


Assuntos
Metabolismo dos Carboidratos , AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Triptofanase/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Meios de Cultura/química , Proteínas de Membrana Transportadoras/metabolismo , beta-Galactosidase/metabolismo
16.
PLoS Genet ; 10(1): e1004054, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391518
17.
Mol Microbiol ; 91(3): 508-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24330203

RESUMO

TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram-negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild-type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9-glucose medium but that adding iron restores wild-type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron-dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC-directed export or efflux, to eliminate extraneous physiological effects.


Assuntos
Enterobactina/metabolismo , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/deficiência , Periplasma/química , Proteínas da Membrana Bacteriana Externa , Meios de Cultura/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Ferro/metabolismo
18.
J Bacteriol ; 195(19): 4415-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893115

RESUMO

Penicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Ligação às Penicilinas/metabolismo , Estresse Fisiológico/fisiologia , Parede Celular , Escherichia coli/genética , Flagelos/genética , Flagelos/fisiologia , Teste de Complementação Genética , Movimento , Mutação , Proteínas de Ligação às Penicilinas/genética
19.
J Bacteriol ; 195(11): 2452-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23543719

RESUMO

Interactions with immune responses or exposure to certain antibiotics can remove the peptidoglycan wall of many Gram-negative bacteria. Though the spheroplasts thus created usually lyse, some may survive by resynthesizing their walls and shapes. Normally, bacterial morphology is generated by synthetic complexes directed by FtsZ and MreBCD or their homologues, but whether these classic systems can recreate morphology in the absence of a preexisting template is unknown. To address this question, we treated Escherichia coli with lysozyme to remove the peptidoglycan wall while leaving intact the inner and outer membranes and periplasm. The resulting lysozyme-induced (LI) spheroplasts recovered a rod shape after four to six generations. Recovery proceeded via a series of cell divisions that produced misshapen and branched intermediates before later progeny assumed a normal rod shape. Importantly, mutants defective in mounting the Rcs stress response and those lacking penicillin binding protein 1B (PBP1B) or LpoB could not divide or recover their cell shape but instead enlarged until they lysed. LI spheroplasts from mutants lacking the Lpp lipoprotein or PBP6 produced spherical daughter cells that did not recover a normal rod shape or that did so only after a significant delay. Thus, to regenerate normal morphology de novo, E. coli must supplement the classic FtsZ- and MreBCD-directed cell wall systems with activities that are otherwise dispensable for growth under normal laboratory conditions. The existence of these auxiliary mechanisms implies that they may be required for survival in natural environments, where bacterial walls can be damaged extensively or removed altogether.


Assuntos
Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citologia , Peptidoglicano/metabolismo , Esferoplastos/citologia , Estresse Fisiológico , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Divisão Celular , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Lipoproteínas/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Muramidase/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano Glicosiltransferase/metabolismo , Fenótipo , Regeneração , Deleção de Sequência , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Esferoplastos/genética , Esferoplastos/fisiologia
20.
Microbiology (Reading) ; 159(Pt 2): 402-410, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23397453

RESUMO

The signalling molecule indole occurs in significant amounts in the mammalian intestinal tract and regulates diverse microbial processes, including bacterial motility, biofilm formation, antibiotic resistance and host cell invasion. In Escherichia coli, the enzyme tryptophanase (TnaA) produces indole from tryptophan, but it is not clear what determines how much indole E. coli can produce and excrete, making it difficult to interpret experiments that investigate the biological effects of indole at high concentrations. Here, we report that the final yield of indole depends directly, and perhaps solely, on the amount of exogenous tryptophan. When supplied with a range of tryptophan concentrations, E. coli converted this amino acid into an equal amount of indole, up to almost 5 mM, an amount well within the range of the highest concentrations so far examined for their physiological effects. Indole production relied heavily on the tryptophan-specific transporter TnaB, even though the alternative transporters AroP and Mtr could import sufficient tryptophan to induce tnaA expression. This TnaB requirement proceeded via tryptophan transport and was not caused by activation of TnaA itself. Bacterial growth was unaffected by the presence of TnaA in the absence of exogenous tryptophan, suggesting that the enzyme does not hydrolyse significant quantities of the internal anabolic amino acid pool. The results imply that E. coli synthesizes TnaA and TnaB mainly, or solely, for the purpose of converting exogenous tryptophan into indole, under conditions and for signalling purposes that remain to be fully elucidated.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Indóis/metabolismo , Triptofano/metabolismo , Triptofanase/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA