Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Rep ; 43(2): 113754, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354086

RESUMO

Blood-borne pathogens can cause systemic inflammatory response syndrome (SIRS) followed by protracted, potentially lethal immunosuppression. The mechanisms responsible for impaired immunity post-SIRS remain unclear. We show that SIRS triggered by pathogen mimics or malaria infection leads to functional paralysis of conventional dendritic cells (cDCs). Paralysis affects several generations of cDCs and impairs immunity for 3-4 weeks. Paralyzed cDCs display distinct transcriptomic and phenotypic signatures and show impaired capacity to capture and present antigens in vivo. They also display altered cytokine production patterns upon stimulation. The paralysis program is not initiated in the bone marrow but during final cDC differentiation in peripheral tissues under the influence of local secondary signals that persist after resolution of SIRS. Vaccination with monoclonal antibodies that target cDC receptors or blockade of transforming growth factor ß partially overcomes paralysis and immunosuppression. This work provides insights into the mechanisms of paralysis and describes strategies to restore immunocompetence post-SIRS.


Assuntos
Patógenos Transmitidos pelo Sangue , Terapia de Imunossupressão , Humanos , Células Dendríticas , Paralisia , Síndrome de Resposta Inflamatória Sistêmica
2.
J Immunol ; 193(8): 3851-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25200952

RESUMO

Dendritic cells (DCs) are directly activated by pathogen-associated molecular patterns (PAMPs) and undergo maturation. Mature DCs express high levels of MHC class II molecules ("signal 1"), upregulate T cell costimulatory receptors ("signal 2"), and secrete "signal 3" cytokines (e.g., IL-12). Mature DCs efficiently present Ags linked to the activating PAMP and prime naive T cells. However, mature DCs downregulate MHC II synthesis, which prevents them from presenting newly encountered Ags. DCs can also be indirectly activated by inflammatory mediators released during infection (e.g., IFN). Indirectly activated DCs mature but do not present pathogen Ags (as they have not encountered the pathogen) and do not provide signal 3. Therefore, although they are probably generated in large numbers upon infection or vaccination, indirectly activated DCs are considered to play little or no role in T cell immunity. In this article, we show that indirectly activated DCs retain their capacity to present Ags encountered after maturation in vivo. They can also respond to PAMPs, but the previous encounter of inflammatory signals alters their cytokine (signal 3) secretion pattern. This implies that the immune response elicited by a PAMP is more complex than predicted by the examination of the immunogenic features of directly activated DCs, and that underlying inflammatory processes can skew the immune response against pathogens. Our observations have important implications for the design of vaccines and for the understanding of the interactions between simultaneous infections, or of infection in the context of ongoing sterile inflammation.


Assuntos
Apresentação de Antígeno/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Animais , Antígenos CD8/biossíntese , Diferenciação Celular/imunologia , Antígenos de Histocompatibilidade Classe II/biossíntese , Mediadores da Inflamação/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Ovalbumina/imunologia , Linfócitos T/imunologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Ubiquitina-Proteína Ligases/biossíntese
3.
Eur J Immunol ; 40(6): 1674-81, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20391433

RESUMO

Despite extensive evidence that Plasmodium species are capable of stimulating the immune system, the association of malaria with a higher incidence of other infectious diseases and reduced responses to vaccination against unrelated pathogens suggests the existence of immune suppression. Recently, we provided evidence that blood-stage Plasmodium berghei infection leads to suppression of MHC class I-restricted immunity to third party (non-malarial) antigens as a consequence of systemic DC activation. This earlier study did not, however, determine whether reactivity was also impaired to MHC class II-restricted third party antigens or to Plasmodium antigens themselves. Here, we show that while P. berghei-expressed antigens were presented early in infection, there was a rapid decline in presentation within 4 days, paralleling impairment in MHC class I- and II-restricted presentation of third party antigens. This provides important evidence that P. berghei not only causes immunosuppression to subsequently encountered third party antigens, but also rapidly limits the capacity to generate effective parasite-specific immunity.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/imunologia , Malária/imunologia , Animais , Antígenos de Protozoários/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Parasitos/imunologia , Plasmodium berghei/imunologia
4.
Nat Immunol ; 9(11): 1244-52, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18849989

RESUMO

The importance of conventional dendritic cells (cDCs) in the processing and presentation of antigen is well established, but the contribution of plasmacytoid dendritic cells (pDCs) to these processes, and hence to T cell immunity, remains unclear. Here we showed that unlike cDCs, pDCs continued to synthesize major histocompatibility complex (MHC) class II molecules and the MHC class II ubiquitin ligase MARCH1 long after activation. Sustained MHC class II-peptide complex formation, ubiquitination and turnover rendered pDCs inefficient in the presentation of exogenous antigens but enabled pDCs to continuously present endogenous viral antigens in their activated state. As the antigen-presenting abilities of cDCs and pDCs are fundamentally distinct, these two cell types may activate largely nonoverlapping repertoires of CD4(+) T cells.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Ubiquitinação , Animais , Antígenos Virais/imunologia , Antígenos CD11/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
5.
Immunol Cell Biol ; 86(2): 200-5, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18026177

RESUMO

Dendritic cells (DCs) play major roles in immunosurveillance. In peripheral tissues, 'immature' DCs are dedicated to capturing antigens. Detection of pathogens through Toll-like receptors (TLRs) triggers DC migration to the lymph nodes (LNs), where they acquire a 'mature' phenotype specialized at presenting antigens. However, DCs migrate from tissues and mature even in the absence of overt infections. This has been attributed to detection of commensal flora in the skin, the gut or other peripheral tissues in the steady state. To test this assumption, we have analyzed the DCs contained in the lymphoid organs of germ-free mice and of mice lacking the TLR adapter molecules, MyD88 and TRIF. We show that the proportion and expression of maturation markers in DC immigrants in the LNs of these mice are similar to those in normal mice. These results suggest that DC migration from tissues, followed by their phenotypic maturation, is regulated in the steady state by an inherent program of DC differentiation or by the release of low levels of inflammatory signals from normal tissues.


Assuntos
Células Dendríticas/fisiologia , Receptores Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Bactérias/imunologia , Movimento Celular , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Vida Livre de Germes , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo
6.
Proc Natl Acad Sci U S A ; 104(45): 17753-8, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17978177

RESUMO

When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II-peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections.


Assuntos
Antígenos Virais/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Vacinas Virais/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/virologia , Citometria de Fluxo , Camundongos , Muramidase/imunologia , Ovalbumina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA