Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693526

RESUMO

The cornu ammonis area 2 (CA2) region is essential for social behaviors, especially in social aggression and social memory. Recently, we showed that targeted CA2 stimulation of vasopressin presynaptic fibers from the paraventricular nuclei of hypothalamus strongly enhances social memory in mice. In addition, the CA2 area of the mouse hippocampus receives neuronal inputs from other regions including the septal nuclei, the diagonal bands of Broca, supramammillary nuclei, and median raphe nucleus. However, the functions of these projections have been scarcely investigated. A functional role of median raphe (MR) - CA2 projection is supported by the MR to CA2 projections and 82% reduction of hippocampal serotonin (5-HT) levels following MR lesions. Thus, we investigated the behavioral role of presynaptic fibers from the median raphe nucleus projecting to the dorsal CA2 (dCA2). Here, we demonstrate the optogenetic stimulation of 5-HT projections to dCA2 from the MR do not alter social memory, but instead reduce social interaction. We show that optical stimulation of MR fibers excites interneurons in the stratum radiatum (SR) and stratum lacunosum moleculare (SLM) of CA2 region. Consistent with these observations, we show that bath application of 5-HT increases spontaneous GABA release onto CA2 pyramidal neurons and excites presumed interneurons located in the SR/SLM. This is the first study, to our knowledge, which investigates the direct effect of 5-HT release from terminals onto dCA2 neurons on social behaviors. This highlights the different roles for these inputs (i.e., vasopressin inputs regulating social memory versus serotonin inputs regulating social interaction).

2.
bioRxiv ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36789441

RESUMO

Oxytocin (Oxt) and vasopressin (Avp) are two neuropeptides with many central actions related to social cognition. The oxytocin (Oxtr) and vasopressin 1b (Avpr1b) receptors are co-expressed in the pyramidal neurons of the hippocampal subfield CA2 and are known to play a critical role in social memory formation. How the neuropeptides perform this function in this region is not fully understood. Here, we report the behavioral effects of a life-long conditional removal (knockout, KO) of either the Oxtr alone or both Avpr1b and Oxtr from the pyramidal neurons of CA2 as well as the resultant changes in synaptic transmission within the different fields of the hippocampus. Surprisingly, the removal of both receptors results in mice that are unable to habituate to a familiar female presented for short duration over short intervals but are able to recognize and discriminate females when presented for a longer duration over a longer interval. Importantly, these double KO mice were unable to discriminate between a male littermate and a novel male. Synaptic transmission between CA3 and CA2 is enhanced in these mice, suggesting a compensatory mechanism is activated to make up for the loss of the receptors. Overall, our results demonstrate that co-expression of the receptors in CA2 is necessary to allow intact social memory processing.

3.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35017259

RESUMO

Oxytocin (Oxt) controls reproductive physiology and various kinds of social behaviors, but the exact contribution of Oxt to different components of parental care still needs to be determined. Here, we illustrate the neuroanatomical relations of the parental nurturing-induced neuronal activation with magnocellular Oxt neurons and fibers in the medial preoptic area (MPOA), the brain region critical for parental and alloparental behaviors. We used genetically-targeted mouse lines for Oxt, Oxt receptor (Oxtr), vasopressin receptor 1a (Avpr1a), vasopressin receptor 1b (Avpr1b), and thyrotropin-releasing hormone (Trh) to systematically examine the role of Oxt-related signaling in pup-directed behaviors. The Oxtr-Avpr1a-Avpr1b triple knock-out (TKO), and Oxt-Trh-Avpr1a-Avpr1b quadruple KO (QKO) mice were grossly healthy and fertile, except for their complete deficiency in milk ejection and modest deficiency in parturition secondary to maternal loss of the Oxt or Oxtr gene. In our minimal stress conditions, pup-directed behaviors in TKO and QKO mothers and fathers, virgin females and males were essentially indistinguishable from those of their littermates with other genotypes. However, Oxtr KO virgin females did show decreased pup retrieval in the pup-exposure assay performed right after restraint stress. This stress vulnerability in the Oxtr KO was abolished by the additional Avpr1b KO. The general stress sensitivity, as measured by plasma cortisol elevation after restraint stress or by the behavioral performance in the open field (OF) and elevated plus maze (EPM), were not altered in the Oxtr KO but were reduced in the Avpr1b KO females, indicating that the balance of neurohypophysial hormones affects the outcome of pup-directed behaviors.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Feminino , Masculino , Camundongos , Neurônios , Parto , Gravidez , Receptores de Ocitocina/genética , Comportamento Social
4.
Nat Neurosci ; 24(4): 529-541, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589833

RESUMO

Oxytocin (OT) orchestrates social and emotional behaviors through modulation of neural circuits. In the central amygdala, the release of OT modulates inhibitory circuits and, thereby, suppresses fear responses and decreases anxiety levels. Using astrocyte-specific gain and loss of function and pharmacological approaches, we demonstrate that a morphologically distinct subpopulation of astrocytes expresses OT receptors and mediates anxiolytic and positive reinforcement effects of OT in the central amygdala of mice and rats. The involvement of astrocytes in OT signaling challenges the long-held dogma that OT acts exclusively on neurons and highlights astrocytes as essential components for modulation of emotional states under normal and chronic pain conditions.


Assuntos
Astrócitos/metabolismo , Núcleo Central da Amígdala/metabolismo , Emoções/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/farmacologia , Ratos , Ratos Wistar , Receptores de Ocitocina/metabolismo
6.
Front Mol Neurosci ; 13: 61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390799

RESUMO

Social recognition is fundamental for social decision making and the establishment of long-lasting affiliative behaviors in behaviorally complex social groups. It is a critical step in establishing a selective preference for a social partner or group member. C57BL/6J lab mice do not form monogamous relationships, and typically do not show prolonged social preferences for familiar mice. The CA2 hippocampal subfield plays a crucial role in social memory and optogenetic stimulation of inputs to the dorsal CA2 field during a short memory acquisition period can enhance and extend social memories in mice. Here, we show that partner preference in mice can be induced by chemogenetic selective stimulation of the monosynaptic projections from the hypothalamic paraventricular nucleus (PVN) to the CA2 during the cohabitation period. Specifically, male mice spend more time in social contact, grooming and huddling with the partner compared to a novel female. Preference was not induced by prolonging the cohabitation period and allowing more time for social interactions and males to sire pups with the familiar female. These results suggest that PVN-to-CA2 projections are part of an evolutionarily conserved neural circuitry underlying the formation of social preference and may promote behavioral changes with appropriate stimulation.

7.
Front Mol Neurosci ; 13: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256314

RESUMO

Oxytocin, acting through the oxytocin receptor (Oxtr) in the periphery, is best known for its roles in regulating parturition and lactation. However, it is also now known to possess a number of important social functions within the central nervous system, including social preference, memory and aggression, that vary to different degrees in different species. The Oxtr is found in both excitatory and inhibitory neurons within the brain and research is focusing on how, for example, activation of the receptor in interneurons can enhance the signal-to-noise of neuronal transmission. It is important to understand which neurons in the mouse dorsal hippocampus might be activated during memory formation. Therefore, we examined the colocalization of transcripts in over 5,000 neurons for Oxtr with those for nine different markers often found in interneurons using hairpin chain reaction in situ hybridization on hippocampal sections. Most pyramidal cell neurons of CA2 and many in the CA3 express Oxtr. Outside of those excitatory neurons, over 90% of Oxtr-expressing neurons co-express glutamic acid decarboxylase-1 (Gad-1) with progressively decreasing numbers of co-expressing cholecystokinin, somatostatin, parvalbumin, neuronal nitric oxide synthase, the serotonin 3a receptor, the vesicular glutamate transporter 3, calbindin 2 (calretinin), and vasoactive intestinal polypeptide neurons. Distributions were analyzed within hippocampal layers and regions as well. These findings indicate that Oxtr activation will modulate the activity of ~30% of the Gad-1 interneurons and the majority of the diverse population of those, mostly, interneuron types specifically examined in the mouse hippocampus.

8.
Front Behav Neurosci ; 13: 218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787886

RESUMO

The arginine vasopressin 1b receptor (Avpr1b) plays an important role in social behaviors including aggression, social learning and memory. Genetic removal of Avpr1b from mouse models results in deficits in aggression and short-term social recognition in adults. Avpr1b gene expression is highly enriched in the pyramidal neurons of the hippocampal cornu ammonis 2 (CA2) region. Activity of the hippocampal CA2 has been shown to be required for normal short-term social recognition and aggressive behaviors. Vasopressin acts to enhance synaptic responses of CA2 neurons through a NMDA-receptor dependent mechanism. Genetic removal of the obligatory subunit of the NMDA receptor (Grin1) within distinct hippocampal regions impairs non-social learning and memory. However, the question of a direct role for NMDA receptor activity in Avpr1b neurons to modulate social behavior remains unclear. To answer this question, we first created a novel transgenic mouse line with Cre recombinase knocked into the Avpr1b coding region to genetically target Avpr1b neurons. We confirmed this line has dense Cre expression throughout the dorsal and ventral CA2 regions of the hippocampus, along with scattered expression within the caudate-putamen and olfactory bulb (OB). Conditional removal of the NMDA receptor was achieved by crossing our line to an available floxed Grin1 line. The resulting mice were measured on a battery of social and memory behavioral tests. Surprisingly, we did not observe any differences between Avpr1b-Grin1 knockout mice and their wildtype siblings. We conclude that mice without typical NMDA receptor function in Avpr1b neurons can develop normal aggression as well as short-term social and object memory performance.

9.
Pharmacol Res ; 146: 104324, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31238093

RESUMO

Intranasal delivery of oxytocin (Oxt) has been identified as a potential therapeutic to target human conditions characterized by social deficits, yet the ability of this administrative route to deliver to the brain is unconfirmed. Oxt knockout (Oxt KO) and wildtype C57BL/6 J male mice received Oxt (12 µg total amount) either by nasal or intraperitoneal administration. Oxt concentrations were monitored for 2 h after administration in circulation via a jugular vein catheter and in the brain by two intracerebral microdialysis probes. Group sizes varied from 4 to 7 mice (n = 22 total). We document for the first time that Oxt applied to the nasal mucosa after nasal administration is delivered to the extracellular fluid in the brain. After nasal application, Oxt concentrations in circulation and in the extracellular fluid of the amygdala and, to an extent, the dorsal hippocampus, rose within the first 30 min and remained elevated for the subsequent hour. These findings were confirmed in an Oxt KO mouse line, establishing that the circulating and brain Oxt elevations derive from the administered dose. Interestingly, the pharmacokinetics of Oxt were slightly biased to the brain after nasal administration and to the periphery following intraperitoneal injection. No change in vasopressin levels was detected. These findings have stimulating implications for the interpretation of various behavioral and physiological effects described in animal and human studies after nasal administration of Oxt and provide the pharmacokinetics necessary to develop this drug delivery route for therapeutic purposes.


Assuntos
Tonsila do Cerebelo/metabolismo , Hipocampo/metabolismo , Ocitocina/administração & dosagem , Administração Intranasal , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Injeções Intraperitoneais/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise/métodos , Ocitocina/sangue , Ocitocina/metabolismo , Vasopressinas/sangue , Vasopressinas/metabolismo
10.
Genes Brain Behav ; 18(1): e12535, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30378258

RESUMO

The role of the hippocampus in social memory and behavior is under intense investigation. Oxytocin (Oxt) and vasopressin (Avp) are two neuropeptides with many central actions related to social cognition. Oxt- and Avp-expressing fibers are abundant in the hippocampus and receptors for both peptides are seen throughout the different subfields, suggesting that Oxt and Avp modulate hippocampal-dependent processes. In this review, we first focus on the anatomical sources of Oxt and Avp input to the hippocampus and consider the distribution of their corresponding receptors in different hippocampal subfields and neuronal populations. We next discuss the behavioral outcomes related to social memory seen with perturbation of hippocampal Oxt and Avp signaling. Finally, we review Oxt and Avp modulatory mechanisms in the hippocampus that may underlie the behavioral roles for both peptides.


Assuntos
Hipocampo/metabolismo , Ocitocina/metabolismo , Aprendizado Social , Vasopressinas/metabolismo , Animais , Hipocampo/fisiologia , Roedores
11.
Curr Protoc Neurosci ; 82: 1.3.1-1.3.27, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357110

RESUMO

This unit presents protocols to locate RNA transcripts in tissues. Numerous approaches are detailed, including those that use radiolabeled or colorimetric probes. Also, the probes may be modified oligodeoxynucleotides, singly or in pairs, as well as ribonucleic acids. High sensitivity and specificity are obtained, especially with sets of oligodeoxynucleotide pairs. © 2018 by John Wiley & Sons, Inc.


Assuntos
Digoxigenina , Histocitoquímica/métodos , Hibridização In Situ , Sondas RNA , RNA Mensageiro , Animais , Humanos
12.
Sci Transl Med ; 9(418)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187641

RESUMO

Arginine vasopressin (AVP) made by hypothalamic neurons is released into the circulation to stimulate water resorption by the kidneys and restore water balance after blood loss. Patients who lack this antidiuretic hormone suffer from central diabetes insipidus. We observed that many of these patients were anemic and asked whether AVP might play a role in red blood cell (RBC) production. We found that all three AVP receptors are expressed in human and mouse hematopoietic stem and progenitor cells. The AVPR1B appears to play the most important role in regulating erythropoiesis in both human and mouse cells. AVP increases phosphorylation of signal transducer and activator of transcription 5, as erythropoietin (EPO) does. After sublethal irradiation, AVP-deficient Brattleboro rats showed delayed recovery of RBC numbers compared to control rats. In mouse models of anemia (induced by bleeding, irradiation, or increased destruction of circulating RBCs), AVP increased the number of circulating RBCs independently of EPO. In these models, AVP appears to jump-start peripheral blood cell replenishment until EPO can take over. We suggest that specific AVPR1B agonists might be used to induce fast RBC production after bleeding, drug toxicity, or chemotherapy.


Assuntos
Anemia/metabolismo , Vasopressinas/metabolismo , Vasopressinas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Camundongos , Ratos , Receptores de Vasopressinas/metabolismo
13.
Curr Protoc Neurosci ; 75: 1.3.1-1.3.27, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27063785

RESUMO

Expression of genes is manifested by the production of RNA transcripts within cells. Hybridization histochemistry (or in situ hybridization) permits localization of these transcripts with cellular resolution or better. Furthermore, the relative amounts of transcripts detected in different tissues or in the same tissues in different states (e.g., physiological or developmental) may be quantified. This unit describes hybridization histochemical techniques using either oligodeoxynucleotide probes (see Basic Protocols 1 and 2, Alternate Protocol 1) or RNA probes (riboprobes; see Basic Protocols 3 and 5). These methods include a more recent approach using commercially available sets of oligodeoxynucleotide pairs for colorimetric and fluorescent detection (see Basic Protocol 2), as well as a method for detection of the Y chromosome using either mouse or human riboprobes (see Basic Protocol 5). Additional methods include colorimetric detection (see Basic Protocol 4) and tyramide signal amplification (TSA) of digoxigenin-labeled probes (see Alternate Protocol 2), and autoradiographic detection of radiolabeled probes (see Basic Protocol 6). Finally, methods are provided for labeling oligodeoxynucleotide (see Support Protocol 1) and RNA (see Support Protocol 2) probes, and verifying the probes by northern analysis (see Support Protocol 3).


Assuntos
Histocitoquímica/métodos , Hibridização In Situ/métodos , Sondas RNA/metabolismo , Animais , Humanos , Camundongos , Sondas de Oligonucleotídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cromossomo Y/metabolismo
14.
Neuron ; 90(3): 609-21, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27112498

RESUMO

Oxytocin promotes social interactions and recognition of conspecifics that rely on olfaction in most species. The circuit mechanisms through which oxytocin modifies olfactory processing are incompletely understood. Here, we observed that optogenetically induced oxytocin release enhanced olfactory exploration and same-sex recognition of adult rats. Consistent with oxytocin's function in the anterior olfactory cortex, particularly in social cue processing, region-selective receptor deletion impaired social recognition but left odor discrimination and recognition intact outside a social context. Oxytocin transiently increased the drive of the anterior olfactory cortex projecting to olfactory bulb interneurons. Cortical top-down recruitment of interneurons dynamically enhanced the inhibitory input to olfactory bulb projection neurons and increased the signal-to-noise of their output. In summary, oxytocin generates states for optimized information extraction in an early cortical top-down network that is required for social interactions with potential implications for sensory processing deficits in autism spectrum disorders.


Assuntos
Comportamento Animal/fisiologia , Rede Nervosa/fisiologia , Bulbo Olfatório/fisiologia , Ocitocina/metabolismo , Olfato/fisiologia , Comportamento Social , Animais , Interneurônios/fisiologia , Camundongos Transgênicos , Ratos Wistar
15.
Mol Cell Biol ; 36(9): 1395-411, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26976640

RESUMO

Tristetraprolin (TTP) acts by binding to AU-rich elements in certain mRNAs, such as tumor necrosis factor (TNF) mRNA, and increasing their decay rates. TTP knockout mice exhibit a profound inflammatory syndrome that is largely due to increased TNF levels. Although TTP's effects on gene expression have been well studied in cultured cells, little is known about its functions in intact tissues. We performed deep RNA sequencing on spleens from TTP knockout mice that were also deficient in both TNF receptors ("triple knockout" mice) to remove the secondary effects of excess TNF activity. To help identify posttranscriptionally regulated transcripts, we also compared changes in mature mRNA levels to levels of transiently expressed pre-mRNA. In the triple knockout spleens, levels of 3,014 transcripts were significantly affected by 1.5-fold or more, but only a small fraction exhibited differential mRNA/pre-mRNA changes suggestive of increased mRNA stability. Transferrin receptor mRNA, which contains two highly conserved potential TTP binding sites, was significantly upregulated relative to its pre-mRNA. This was reflected in increased transferrin receptor expression and increased splenic iron/hemosiderin deposition. Our results suggest that TTP deficiency has profound effects on the splenic transcriptome, even in the absence of secondary increases in TNF activity.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Baço/fisiologia , Transcriptoma , Tristetraprolina/genética , Animais , Sítios de Ligação , Éxons , Regulação da Expressão Gênica , Íntrons , Masculino , Camundongos Knockout , RNA Mensageiro , Receptores da Transferrina/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Análise de Sequência de RNA , Baço/imunologia , Tristetraprolina/metabolismo
17.
J Neurochem ; 126(3): 331-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23682839

RESUMO

Oxytocin (Oxt), produced in the hypothalamic paraventricular and supraoptic nuclei for transport to and release from the posterior pituitary, was originally discovered through its role in lactation and parturition. Oxt also plays important roles in the central nervous system by influencing various behaviors. MicroRNAs (miRNAs), endogenous regulators of many genes, are a class of small non-coding RNAs that mediate post-transcriptional gene silencing. We performed miRNA expression profiling of the mouse hypothalamus by deep sequencing. Among the sequenced and cross-mapped small RNAs, expression of known miRNAs and unknown miRNAs candidates were analyzed. We investigated in detail one miRNA, miR-24, and found that it is a novel regulator of Oxt and controls both transcript and peptide levels of Oxt. These results provide insights into potential neurohypophysial hormone regulation mediated by miRNAs.


Assuntos
Hipotálamo/metabolismo , MicroRNAs/genética , Ocitocina/biossíntese , Interferência de RNA/fisiologia , Animais , Ensaio de Imunoadsorção Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Ocitocina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
18.
J Comp Neurol ; 521(8): 1844-66, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23172108

RESUMO

The CA2 area is an important, although relatively unexplored, component of the hippocampus. We used various tracers to provide a comprehensive analysis of CA2 connections in C57BL/6J mice. Using various adeno-associated viruses that express fluorescent proteins, we found a vasopressinergic projection from the paraventricular nuclei of the hypothalamus (PVN) to the CA2 as well as a projection from pyramidal neurons of the CA2 to the supramammillary nuclei. These projections were confirmed by retrograde tracing. As expected, we observed CA2 afferent projections from neurons in ipsilateral entorhinal cortical layer II as well as from bilateral dorsal CA2 and CA3 using retrograde tracers. Additionally, we saw CA2 neuronal input from bilateral medial septal nuclei, vertical and horizontal limbs of the nucleus of diagonal band of Broca, supramammillary nuclei (SUM), and median raphe nucleus. Dorsal CA2 injections of adeno-associated virus expressing green fluorescent protein revealed axonal projections primarily to dorsal CA1, CA2, and CA3 bilaterally. No projection was detected to the entorhinal cortex from the dorsal CA2. These results are consistent with recent observations that the dorsal CA2 forms disynaptic connections with the entorhinal cortex to influence dynamic memory processing. Mouse dorsal CA2 neurons send bilateral projections to the medial and lateral septal nuclei, vertical and horizontal limbs of the diagonal band of Broca, and SUM. Novel connections from the PVN and to the SUM suggest important regulatory roles for CA2 in mediating social and emotional input for memory processing.


Assuntos
Região CA2 Hipocampal/fisiologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/citologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Lateralidade Funcional , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Indóis/metabolismo , Masculino , Camundongos , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Estilbamidinas/metabolismo
19.
J Biol Chem ; 287(34): 29159-67, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22761429

RESUMO

Estrogen uses two mechanisms to exert its effect on the skeleton: it inhibits bone resorption by osteoclasts and, at higher doses, can stimulate bone formation. Although the antiresorptive action of estrogen arises from the inhibition of the MAPK JNK, the mechanism of its effect on the osteoblast remains unclear. Here, we report that the anabolic action of estrogen in mice occurs, at least in part, through oxytocin (OT) produced by osteoblasts in bone marrow. We show that the absence of OT receptors (OTRs) in OTR(-/-) osteoblasts or attenuation of OTR expression in silenced cells inhibits estrogen-induced osteoblast differentiation, transcription factor up-regulation, and/or OT production in vitro. In vivo, OTR(-/-) mice, known to have a bone formation defect, fail to display increases in trabecular bone volume, cortical thickness, and bone formation in response to estrogen. Furthermore, osteoblast-specific Col2.3-Cre(+)/OTR(fl/fl) mice, but not TRAP-Cre(+)/OTR(fl/fl) mice, mimic the OTR(-/-) phenotype and also fail to respond to estrogen. These data attribute the phenotype of OTR deficiency to an osteoblastic rather than an osteoclastic defect. Physiologically, feed-forward OT release in bone marrow by a rising estrogen concentration may facilitate rapid skeletal recovery during the latter phases of lactation.


Assuntos
Osso e Ossos/metabolismo , Estrogênios/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Osteogênese/fisiologia , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Animais , Osso e Ossos/citologia , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Lactação/fisiologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ocitocina/genética , Receptores de Ocitocina/genética
20.
Brain Struct Funct ; 217(1): 107-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21597966

RESUMO

Manganese-enhanced magnetic resonance imaging is a technique that employs the divalent ion of the paramagnetic metal manganese (Mn(2+)) as an effective contrast agent to visualize, in vivo, the mammalian brain. As total achievable contrast is directly proportional to the net amount of Mn(2+) accumulated in the brain, there is a great interest in optimizing administration protocols to increase the effective delivery of Mn(2+) to the brain while avoiding the toxic effects of Mn(2+) overexposure. In this study, we investigated outcomes following continuous slow systemic infusion of manganese chloride (MnCl(2)) into the mouse via mini-osmotic pump administration. The effects of increasing fractionated rates of Mn(2+) infusion on signal enhancement in regions of the brain were analyzed in a three-treatment study. We acquired whole-brain 3-D T1-weighted images and performed region of interest quantitative analysis to compare mean normalized signal in Mn(2+) treatments spanning 3, 7, or 14 days of infusion (rates of 1, 0.5, and 0.25 µL/h, respectively). Evidence of Mn(2+) transport at the conclusion of each infusion treatment was observed throughout the brains of normally behaving mice. Regions of particular Mn(2+) accumulation include the olfactory bulbs, cortex, infralimbic cortex, habenula, thalamus, hippocampal formation, amygdala, hypothalamus, inferior colliculus, and cerebellum. Signals measured at the completion of each infusion treatment indicate comparable means for all examined fractionated rates of Mn(2+) infusion. In this current study, we achieved a significantly higher dose of Mn(2+) (180 mg/kg) than that employed in previous studies without any observable toxic effects on animal physiology or behavior.


Assuntos
Encéfalo/anatomia & histologia , Cloretos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/administração & dosagem , Animais , Encéfalo/fisiologia , Cloretos/farmacocinética , Bombas de Infusão Implantáveis , Masculino , Compostos de Manganês/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Ocitocina/genética , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA