Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Fungal Biol ; 5: 1390724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812984

RESUMO

Introducion: Fungal melanin is an underexplored natural biomaterial of great biotechnological interest in different areas. This study investigated the physical, chemical, electrochemical, and metal-binding properties of melanin extracted from the metallotolerant black fungus Exophiala mesophila strain IRTA-M2-F10. Materials and methods: Specific inhibitory studies with tricyclazole and biochemical profiling of whole cells by synchrotron radiation-based Fourier-transform infrared spectral microscopy (SR-FTIRM) were performed. An optimized extraction protocol was implemented, and purified fungal melanin was characterized using an array of spectrophotometric techniques (UV-Vis, FTIR, and EPR) and by cyclic voltammetry (CV) experiments. The metal-binding capacity of melanin extracts was also assessed by using Cr(VI) as a model heavy metal. Results: Inhibitory studies indicated that 1,8-dihydroxynaphthalene may be the main precursor molecule of E. mesophila melanin (DHN-melanin). The biochemical characterization of fungal melanin extracts were benchmarked against those from two melanins comprising the precursor molecule L-3,4-dihydroxiphenylalanine (DOPA-melanin): extracts from the ink of the cephalopod Sepia officinalis and DOPA-melanin synthesized in the laboratory. The CV results of melanin extracts incubated with and without cell suspensions of the electroconductive bacterium Geobacter sulfurreducens were indicative of novel semiquinone/hydroquinone redox transformations specific for each melanin type. These interactions may play an important role in cation exchange for the adsorption of metals and in microbial interspecies electron transfer processes. Discussion: The obtained results provided further evidence for the DHN-nature of E. mesophila melanin. The FTIR profiling of melanin extracts exposed to Cr(VI), compared to unexposed melanin, resulted in useful information on the distinct surface-binding properties of fungal melanin. The parameters of the Langmuir and Freundlicht isotherms for the adsorption of Cr(VI) were determined and compared to bibliographic data. Altogether, the inherent properties of fungal melanin suggest its promising potential as a biomaterial for environmental applications.

2.
Sci Rep ; 14(1): 11973, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796617

RESUMO

The biology underlying proton minibeam radiation therapy (pMBRT) is not fully understood. Here we aim to elucidate the biological effects of pMBRT using Fourier Transform Infrared Microspectroscopy (FTIRM). In vitro (CTX-TNA2 astrocytes and F98 glioma rat cell lines) and in vivo (healthy and F98-bearing Fischer rats) irradiations were conducted, with conventional proton radiotherapy and pMBRT. FTIRM measurements were performed at ALBA Synchrotron, and multivariate data analysis methods were employed to assess spectral differences between irradiation configurations and doses. For astrocytes, the spectral regions related to proteins and nucleic acids were highly affected by conventional irradiations and the high-dose regions of pMBRT, suggesting important modifications on these biomolecules. For glioma, pMBRT had a great effect on the nucleic acids and carbohydrates. In animals, conventional radiotherapy had a remarkable impact on the proteins and nucleic acids of healthy rats; analysis of tumour regions in glioma-bearing rats suggested major nucleic acid modifications due to pMBRT.


Assuntos
Glioma , Terapia com Prótons , Ratos Endogâmicos F344 , Síncrotrons , Animais , Ratos , Glioma/radioterapia , Glioma/patologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Linhagem Celular Tumoral , Astrócitos/efeitos da radiação , Astrócitos/metabolismo , Ácidos Nucleicos/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
3.
Radiother Oncol ; 196: 110238, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38527626

RESUMO

BACKGROUND: FLASH-radiotherapy (FLASH-RT) is an emerging modality that uses ultra-high dose rates of radiation to enable curative doses to the tumor while preserving normal tissue. The biological studies showed the potential of FLASH-RT to revolutionize radiotherapy cancer treatments. However, the complex biological basis of FLASH-RT is not fully known yet. AIM: Within this context, our aim is to get deeper insights into the biomolecular mechanisms underlying FLASH-RT through Fourier Transform Infrared Microspectroscopy (FTIRM). METHODS: C57Bl/6J female mice were whole brain irradiated at 10 Gy with the eRT6-Oriatron system. 10 Gy FLASH-RT was delivered in 1 pulse of 1.8µs and conventional irradiations at 0.1 Gy/s. Brains were sampled and prepared for analysis 24 h post-RT. FTIRM was performed at the MIRAS beamline of ALBA Synchrotron. Infrared raster scanning maps of the whole mice brain sections were collected for each sample condition. Hyperspectral imaging and Principal Component Analysis (PCA) were performed in several regions of the brain. RESULTS: PCA results evidenced a clear separation between conventional and FLASH irradiations in the 1800-950 cm-1 region, with a significant overlap between FLASH and Control groups. An analysis of the loading plots revealed that most of the variance accounting for the separation between groups was associated to modifications in the protein backbone (Amide I). This protein degradation and/or conformational rearrangement was concomitant with nucleic acid fragmentation/condensation. Cluster separation between FLASH and conventional groups was also present in the 3000-2800 cm-1 region, being correlated with changes in the methylene and methyl group concentrations and in the lipid chain length. Specific vibrational features were detected as a function of the brain region. CONCLUSION: This work provided new insights into the biomolecular effects involved in FLASH-RT through FTIRM. Our results showed that beyond nucleic acid investigations, one should take into account other dose-rate responsive molecules such as proteins, as they might be key to understand FLASH effect.

4.
PLoS One ; 18(8): e0289824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616300

RESUMO

The management of cancer patients has markedly improved with the advent of personalised medicine where treatments are given based on tumour antigen expression amongst other. Within this remit, liquid biopsies will no doubt improve this personalised cancer management. Identifying circulating tumour cells in blood allows a better assessment for tumour screening, staging, response to treatment and follow up. However, methods to identify/capture these circulating tumour cells using cancer cells' antigen expression or their physical properties are not robust enough. Thus, a methodology that can identify these circulating tumour cells in blood regardless of the type of tumour is highly needed. Fourier Transform Infrared (FTIR) microspectroscopy, which can separate cells based on their biochemical composition, could be such technique. In this feasibility study, we studied lung cancer cells (squamous cell carcinoma and adenocarcinoma) mixed with peripheral blood mononuclear cells (PBMC). The data obtained shows, for the first time, that FTIR microspectroscopy together with Random Forest classifier is able to identify a single lung cancer cell in blood. This separation was easier when the region of the IR spectra containing lipids and the amide A (2700 to 3500 cm-1) was used. Furthermore, this work was carried out using glass coverslips as substrates that are widely used in pathology departments. This allows further histopathological cell analysis (staining, immunohistochemistry, …) after FTIR spectra are obtained. Hence, although further work is needed using blood samples from patients with cancer, FTIR microspectroscopy could become another tool to be used in liquid biopsies for the identification of circulating tumour cells, and in the personalised management of cancer.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Estudos de Viabilidade , Leucócitos Mononucleares , Análise de Fourier , Neoplasias Pulmonares/diagnóstico , Biópsia Líquida
5.
ACS Appl Energy Mater ; 6(13): 7250-7257, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37448980

RESUMO

Ca- and Mg-based batteries represent a more sustainable alternative to Li-ion batteries. However, multivalent cation technologies suffer from poor cation mass transport. In addition, the development of positive electrodes enabling reversible charge storage currently represents one of the major challenges. Organic positive electrodes, in addition to being the most sustainable and potentially low-cost candidates, compared with their inorganic counterparts, currently present the best electrochemical performances in Ca and Mg cells. Unfortunately, organic positive electrodes suffer from relatively low capacity retention upon cycling, the origin of which is not yet fully understood. Here, 1,4,5,8-naphthalenetetracarboxylic dianhydride-derived polyimide was tested in Li, Na, Mg, and Ca cells for the sake of comparison in terms of redox potential, gravimetric capacities, capacity retention, and rate capability. The redox mechanisms were also investigated by means of operando IR experiments, and a parameter affecting most figures of merit has been identified: the presence of contact ion-pairs in the electrolyte.

6.
Chem Sci ; 14(7): 1641-1665, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819848

RESUMO

Synchrotron radiation based techniques are powerful tools for battery research and allow probing a wide range of length scales, with different depth sensitivities and spatial/temporal resolutions. Operando experiments enable characterization during functioning of the cell and are thus a precious tool to elucidate the reaction mechanisms taking place. In this perspective, the current state of the art for the most relevant techniques (scattering, spectroscopy, and imaging) is discussed together with the bottlenecks to address, either specific for application in the battery field or more generic. The former includes the improvement of cell designs, multi-modal characterization and development of protocols for automated or at least semi-automated data analysis to quickly process the huge amount of data resulting from operando experiments. Given the recent evolution in these areas, accelerated progress is expected in the years to come, which should in turn foster battery performance improvements.

7.
Pharmaceutics ; 15(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678818

RESUMO

Marine polysaccharides are recognized for their biological properties and their application in the drug delivery field, favoring hydrogel-forming capacities for cutaneous application towards several dermatological conditions. Essential oils have been widely used in skin, not only for their remarkable biological properties, but also for their capacity to enhance permeation through the skin layers and to confer a pleasant scent to the formulation. In this study, menthol, L-linalool, bergamot oil, and ß-pinene were incorporated in alginate/fucoidan hydrogels to evaluate their skin permeation enhancement profile and assess their influence on the skin organization. The combinations of different essential oils with the marine-based fucoidan/alginate hydrogel matrix were characterized, resulting in formulations with pseudoplastic rheological properties favorable for a uniform application in the skin. The ex vivo Franz diffusion permeation assays revealed that calcein loaded in bergamot-alginate/fucoidan hydrogel permeated more than 15 mg out of the initial 75 mg than when in linalool-alginate/fucoidan, alginate/fucoidan or hydrogel without any incorporated oil. Skin calcein retention for menthol- and pinene-alginate/fucoidan hydrogels was 15% higher than in the other conditions. Infrared micro-spectroscopic analysis through synchrotron-based Fourier Transform Infrared Microspectroscopy evidenced a symmetric shift in CH3 groups towards higher wavenumber, indicating lipids' fluidization and less lateral packing, characterized by a band at 1468 cm-1, with the bergamot-alginate/fucoidan, which contributes to enhancing skin permeation. The study highlights the effect of the composition in the design of formulations for topical or transdermal delivery systems.

8.
Chem Phys Lipids ; 249: 105254, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279929

RESUMO

The application of nanoparticles as permeation enhancers in skin drug delivery is a growing research field. However, the mechanisms of nanoparticles' interaction with the skin structure are still unknown. Fucoidan/chitosan nanoparticles have demonstrated several physicochemical and biological advantages, among which is the enhancement of skin permeation. This study aims to elucidate permeation enhancement mechanisms using synchrotron-based Fourier Transform Infrared Microspectroscopy (SR-FTIRM) combined with multivariate analysis and in vitro skin permeation assay. Given the molecular weight influence on chitosan's properties, the nanoparticles-skin interactions were evaluated with nanoparticles produced using low- and medium-molecular-weight chitosan. Chemical maps and spectral analysis revealed that fucoidan/chitosan nanoparticles induced changes in the lipids and protein regions. Inter-sample spectral differences were identified using principal component analysis. Low molecular weight fucoidan/ chitosan nanoparticles caused changes in the skin lipids' lateral packing and structure at the stratum corneum layer towards a less ordered state and higher fluidity, and no evidence was found on proteins structure. The opposite was revealed for medium molecular weight fucoidan/chitosan nanoparticles, which induced changes in the secondary structure of keratin and altered lipid structure to an ordered and dense conformation. In vitro permeation assays with Franz diffusion cells correlate with the observed changes in the skin lipid and protein structure with enhanced skin permeation of a hydrophilic molecule incorporated within the fucoidan/chitosan nanoparticles. The findings of this study unveil molecular changes in the skin structure induced by the nanoparticles only possible with the application of the powerful and precise SR-FTIRM technique. This knowledge allows the design of nanoparticles towards an internalization pathway determining their fate within the skin structure.


Assuntos
Quitosana , Nanopartículas , Síncrotrons , Quitosana/química , Pele/química , Nanopartículas/química , Proteínas/metabolismo , Lipídeos/química , Administração Cutânea
9.
Health Sci Rep ; 5(4): e667, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35702515

RESUMO

There are several stitch techniques used for surgical wound closing. Each stitch has its own benefits and drawbacks that a surgeon must balance before use. In this paper, we highlight some of the more common techniques utilized in operative wound closure and briefly discuss benefits and caveats one must be aware of before using. The rest of our paper will focus on a new technique, the Kuwait Stitch, with instructions on how to perform the technique followed by a discussion on the benefits and indications for use of this stitch.

10.
Dent Mater ; 38(4): 670-679, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35256209

RESUMO

OBJECTIVES: To compare the side effects of typical whitening treatments (by means of oxidation) compared to the new treatment developed by the authors through reduction. The aim is to provide information about the chemical interactions of the encapsulated reductant agent (metabisulfite, MBS) with the enamel structure compared with carbamide peroxide (CP) and to study their penetration in the hydroxyapatite (HAP) and the changes produced in the mineral and its hardness. METHODS: Chemical imaging is performed by synchrotron-based micro Fourier transformed infrared spectroscopy (SR-µFTIR). Continuous Stiffness Measurements (CSM) were used to determine the depth reached by the treatments in order to delimitate the area of study. RESULTS: The SR-µFTIR studies showed that MBS treatments softened the first 10 µm of enamel, as happens in the initial stages of tooth decay. Principal component analysis (PCA) showed that the main differences between treatments were found in the intensity of the ν3 PO43- peak related to tooth demineralization. CP and MBS promoted different changes in the HAP mineral, observed as opposite shifts of the peak: CP shortened the P-O bond while MBS seemed to elongate it. Moreover, MBS promoted the loss of carbonates while CP did not, which is probably related to the solution's pH. When comparing MBS and MBS Liposomes, it was observed how liposomes favoured the diffusion of MBS to inner layers, since the effects of MBS were observed in deeper enamel. Thus, the encapsulated MBS whitening effect is highly improved in terms of time when compared to MBS alone or CP. SIGNIFICANCE: The obtained results indicated that using oxidizing (CP) or reducing (MBS) treatments, promote different HAP mineral changes, and that liposomes favour the diffusion of MBS into the enamel. It is the first time that synchrotron light is used to map the bovine incisor's enamel chemically, and to determine the effect of a whitening treatment in terms of chemical HAP modifications, and the extent in deep of these effects.


Assuntos
Clareadores Dentários , Clareamento Dental , Dente , Animais , Peróxido de Carbamida/farmacologia , Bovinos , Esmalte Dentário , Durapatita/farmacologia , Peróxido de Hidrogênio , Lipossomos/farmacologia , Oxirredução , Peróxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Clareamento Dental/métodos , Clareadores Dentários/farmacologia , Ureia
11.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163204

RESUMO

The preparation, characterization, and controlled release of hydroxyapatite (HAp) nanoparticles loaded with streptomycin (STR) was studied. These nanoparticles are highly appropriate for the treatment of bacterial infections and are also promising for the treatment of cancer cells. The analyses involved scanning electron microscopy, dynamic light scattering (DLS) and Z-potential measurements, as well as infrared spectroscopy and X-ray diffraction. Both amorphous (ACP) and crystalline (cHAp) hydroxyapatite nanoparticles were considered since they differ in their release behavior (faster and slower for amorphous and crystalline particles, respectively). The encapsulated nanoparticles were finally incorporated into biodegradable and biocompatible polylactide (PLA) scaffolds. The STR load was carried out following different pathways during the synthesis/precipitation of the nanoparticles (i.e., nucleation steps) and also by simple adsorption once the nanoparticles were formed. The loaded nanoparticles were biocompatible according to the study of the cytotoxicity of extracts using different cell lines. FTIR microspectroscopy was also employed to evaluate the cytotoxic effect on cancer cell lines of nanoparticles internalized by endocytosis. The results were promising when amorphous nanoparticles were employed. The nanoparticles loaded with STR increased their size and changed their superficial negative charge to positive. The nanoparticles' crystallinity decreased, with the consequence that their crystal sizes reduced, when STR was incorporated into their structure. STR maintained its antibacterial activity, although it was reduced during the adsorption into the nanoparticles formed. The STR release was faster from the amorphous ACP nanoparticles and slower from the crystalline cHAp nanoparticles. However, in both cases, the STR release was slower when incorporated in calcium and phosphate during the synthesis. The biocompatibility of these nanoparticles was assayed by two approximations. When extracts from the nanoparticles were evaluated in cultures of cell lines, no cytotoxic damage was observed at concentrations of less than 10 mg/mL. This demonstrated their biocompatibility. Another experiment using FTIR microspectroscopy evaluated the cytotoxic effect of nanoparticles internalized by endocytosis in cancer cells. The results demonstrated slight damage to the biomacromolecules when the cells were treated with ACP nanoparticles. Both ACP and cHAp nanoparticles were efficiently encapsulated in PLA electrospun matrices, providing functionality and bioactive properties.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/uso terapêutico , Estreptomicina/administração & dosagem , Animais , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Durapatita/química , Humanos , Nanopartículas/química , Poliésteres/química , Estreptomicina/farmacologia , Alicerces Teciduais/química , Células Vero
12.
Anal Chem ; 94(4): 1932-1940, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965097

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain tumor, characterized by short median survival and an almost 100% tumor-related mortality. The standard of care treatment for newly diagnosed GBM includes surgical resection followed by concomitant radiochemotherapy. The prevention of disease progression fails due to the poor therapeutic effect caused by the great molecular heterogeneity of this tumor. Previously, we exploited synchrotron radiation-based soft X-ray tomography and hard X-ray fluorescence for elemental microimaging of the shock-frozen GBM cells. The present study focuses instead on the biochemical profiling of live GBM cells and provides new insight into tumor heterogenicity. We studied bio-macromolecular changes by exploring the live-cell synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy in a set of three GBM cell lines, including the patient-derived glioblastoma cell line, before and after riluzole treatment, a medicament with potential anticancer properties. SR-FTIR microspectroscopy shows that GBM live cells of different origins recruit different organic compounds. The riluzole treatment of all GBM cell lines mainly affected carbohydrate metabolism and the DNA structure. Lipid structures and protein secondary conformation are affected as well by the riluzole treatment: cellular proteins assumed cross ß-sheet conformation while parallel ß-sheet conformation was less represented for all GBM cells. Moreover, we hope that a new live-cell approach for GBM simultaneous treatment and examination can be devised to target cancer cells more specifically, i.e., future therapies can develop more specific treatments according to the specific bio-macromolecular signature of each tumor type.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos , Riluzol/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons
13.
Analyst ; 146(22): 6902-6916, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34636832

RESUMO

The contribution of oxidative stress in several chronic and degenerative diseases suggests that antioxidant therapy can be a promising therapeutic strategy. However, in the case of many antioxidants, their biodistribution and bioactivity are restricted due to low water solubility. Curcumin is a powerful free radical scavenger that upon conjugation to gold nanoparticles results in the formation of stable gold nanoparticles that act as highly water-soluble carriers for the curcumin molecules. In the present study, the effect of curcumin-coated gold nanoparticles (Cur-GNPs) on the H2O2-treated human neuroblastoma (SK-N-SH) cell line was evaluated by using Fourier transform infrared (FTIR) microspectroscopy. Biochemical changes in cells resulting from exposure to reactive oxygen species (ROS) and antioxidant treatment on cells were investigated. Analyzing changes in PO2- bands and amide bands in the fingerprint region and also changes in the ratio of CH2(asym) to CH3(asym) bands in the lipid region revealed that post-treatment with Cur-GNPs could effectively decrease the damage on DNA caused by H2O2 treatment, whereas pre-treatment of cells with Cur-GNPs was found to be more effective at preventing lipid peroxidation than post-treatment. Further analysis of the CH2(asym) to CH3(asym) ratio provided information on not only the lipid peroxidation level in cells, but also the interaction of nanoparticles with the plasma membrane, as confirmed by lactate dehydrogenase assay.


Assuntos
Curcumina , Nanopartículas Metálicas , Nanopartículas , Neuroblastoma , Curcumina/farmacologia , Ouro , Humanos , Peróxido de Hidrogênio/toxicidade , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Distribuição Tecidual
14.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576098

RESUMO

The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]-, [o-COSAN]-, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]- could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600-2.500 cm-1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]-, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]- translocates GIC cells' membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/patologia , Compostos Organometálicos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Linhagem Celular Tumoral , DNA/análise , Humanos , Cinética , Lipídeos/análise , Análise Multivariada , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Análise de Componente Principal , Proteínas/análise
15.
JMIRx Med ; 2(3): e29062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548669

RESUMO

BACKGROUND: The use of high-flow nasal therapy (HFNT) to treat COVID-19 pneumonia has been greatly debated around the world due to concerns about increased health care worker transmission and delays in invasive mechanical ventilation (IMV). Herein, we analyzed the utility of the noninvasive ROX (ratio of oxygen saturation) index to predict the need for and timing of IMV. OBJECTIVE: This study aimed to assess whether the ROX index can be a useful score to predict intubation and IMV in patients receiving HFNT as treatment for COVID-19-related hypoxemic respiratory failure. METHODS: This is a retrospective cohort analysis of 129 consecutive patients with COVID-19 admitted to Temple University Hospital in Philadelphia, PA, from March 10, 2020, to May 17, 2020. This is a single-center study conducted in designated COVID-19 units (intensive care unit and other wards) at Temple University Hospital. Patients with moderate and severe hypoxemic respiratory failure treated with HFNT were included in the study. HFNT patients were divided into two groups: HFNT only and intubation (ie, patients who progressed from HFNT to IMV). The primary outcome was the value of the ROX index in predicting the need for IMV. Secondary outcomes were mortality, rate of intubation, length of stay, and rate of nosocomial infections in a cohort treated initially with HFNT. RESULTS: Of the 837 patients with COVID-19, 129 met the inclusion criteria. The mean age was 60.8 (SD 13.6) years, mean BMI was 32.6 (SD 8) kg/m², 58 (45%) were female, 72 (55.8%) were African American, 40 (31%) were Hispanic, and 48 (37.2%) were nonsmokers. The mean time to intubation was 2.5 (SD 3.3) days. An ROX index value of less than 5 at HFNT initiation was suggestive of progression to IMV (odds ratio [OR] 2.137, P=.052). Any further decrease in ROX index value after HFNT initiation was predictive of intubation (OR 14.67, P<.001). Mortality was 11.2% (n=10) in the HFNT-only group versus 47.5% (n=19) in the intubation group (P<.001). Mortality and need for pulmonary vasodilators were higher in the intubation group. CONCLUSIONS: The ROX index helps decide which patients need IMV and may limit eventual morbidity and mortality associated with the progression to IMV.

16.
Anal Chem ; 93(32): 11081-11088, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34355885

RESUMO

The debate of whether a glass substrate can be used in Fourier transform infrared spectroscopy is strongly linked to its potential clinical application. Histopathology glass slides of 1 mm thickness absorb the mid-IR spectrum in the rich fingerprint spectral region. Thus, it is important to assess whether emerging IR techniques can be employed to study biological samples placed on glass substrates. For this purpose, we used optical photothermal infrared (O-PTIR) spectroscopy to study for the first time malignant and non-malignant lung cells with the purpose of identifying IR spectral differences between these cells placed on standard pathology glass slides. The data in this feasibility study showed that O-PTIR can be used to obtain good-quality IR spectra from cells from both the lipid region (3000-2700 cm-1) and the fingerprint region between 1770 and 950 cm-1 but with glass contributions from 1350 to 950 cm-1. A new single-unit dual-range (C-H/FP) quantum cascade laser (QCL) IR pump source was applied for the first time, delivering a clear synergistic benefit to the classification results. Furthermore, O-PTIR is able to distinguish between lung cancer cells and non-malignant lung cells both in the lipid and fingerprint regions. However, when these two spectral ranges are combined, classification accuracies are enhanced with Random Forest modeling classification accuracy results ranging from 96 to 99% across all three studied cell lines. The methodology described here for the first time with a single-unit dual-range QCL for O-PTIR on glass is another step toward its clinical application in pathology.


Assuntos
Vidro , Lasers Semicondutores , Pulmão , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Heart Lung Transplant ; 40(10): 1145-1152, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389222

RESUMO

BACKGROUND: Venous thromboembolism (VTE) post lung transplantation is common and has been associated with worse post transplant survival. We report a comprehensive single center review of VTE incidence in the first post transplant year, investigate modifiable risk factors and assess impact on short term outcomes. METHODS: Retrospective review of all lung transplant recipients between August 2016 to 2018 at Temple University Hospital. Patients were followed for 1 year post transplant. All patients were screened for deep venous thrombosis (DVT) within the first 2 weeks with a venous duplex study. Pre transplant, intra operative, post operative variables, and peri-operative practice patterns were compared between VTE positive and VTE negative groups. Logistic regression modeling was used to identify risk factors for early VTE (VTE within 30 days after transplant). RESULTS: A total of 235 patients were included in the study, 58 patients (24.7%) developed a VTE in the first post transplant year. Median time to diagnosis was 17 days. Of the patients with VTE, 76% had an isolated DVT, 13.5 % had an isolated pulmonary embolism (PE), and 10.3% had concomitant DVT and PE. In a multivariate logistic regression model, cardiopulmonary bypass (CPB) (OR 1.93 p = 0.015) and interruption of VTE prophylaxis (OR 4.42 p < 0.0001) were predictive of early VTE. CONCLUSION: VTE post lung transplant is common despite the use of prophylactic anticoagulation. CPB use and interruption of DVT prophylaxis are risk factors for early post transplant VTE. Measures to ensure consistent and uninterrupted prophylaxis may help decrease VTE incidence after lung transplantation.


Assuntos
Transplante de Pulmão/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Transplantados , Tromboembolia Venosa/etiologia , Idoso , Feminino , Seguimentos , Sobrevivência de Enxerto , Humanos , Incidência , Masculino , Pennsylvania/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Fatores de Risco , Tromboembolia Venosa/epidemiologia
18.
J Hazard Mater ; 419: 126502, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214848

RESUMO

Toxic metals such as cadmium (Cd) and mercury (Hg) represent a threat to photosynthetic organisms of polluted aquatic ecosystems, and knowledge about mechanisms of toxicity is essential for appropriate assessment of environmental risks. We used Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (µSR-FTIR) to characterise major changes of biomolecules caused by Cd and Hg in the model green microalga Chlamydomonas reinhardtii. µSR-FTIR showed several metabolic alterations in different biochemical groups such as carbohydrates, proteins, and lipids in a time-dose dependent manner, with the strongest changes occurring at concentrations above 10 µM Cd and 15 µM Hg after short-term (24 h) treatments. This occurred in a context where metals triggered intracellular oxidative stress and chloroplast damage, along with autophagy induction by overexpressing AUTOPHAGY-RELATED PROTEIN 8 (ATG8). Thin layer chromatography analysis confirmed that toxic metals promoted remarkable changes in lipid profile, with higher degree of esterified fatty acid unsaturation as detected by gas chromatography coupled with mass spectrometry. Under Cd stress, there was specifically higher unsaturation of free fatty acids, while Hg led to stronger unsaturation in monogalactosyldiacylglycerol. µSR-FTIR spectroscopy proved as a valuable tool to identify biochemical alterations in microalgae, information that could be exploited to optimise approaches for metal decontamination.


Assuntos
Mercúrio , Microalgas , Cádmio/toxicidade , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas , Mercúrio/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons
19.
Aging (Albany NY) ; 13(9): 12308-12333, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33901008

RESUMO

UV radiation is one of the main contributors to skin photoaging by promoting the accumulation of cellular senescence, which in turn induces a proinflammatory and tissue-degrading state that favors skin aging. The members of the sirtuin family of NAD+-dependent enzymes play an anti-senescence role and their activation suggests a promising approach for preventing UV-induced senescence in the treatment of skin aging. A two-step screening designed to identify compounds able to protect cells from UV-induced senescence through sirtuin activation identified shikimic acid (SA), a metabolic intermediate in many organisms, as a bona-fide candidate. The protective effects of SA against senescence were dependent on specific activation of SIRT1 as the effect was abrogated by the SIRT1 inhibitor EX-527. Upon UV irradiation SA induced S-phase accumulation and a decrease in p16INK4A expression but did not protect against DNA damage or increased polyploidies. In contrast, SA reverted misfolded protein accumulation upon senescence, an effect that was abrogated by EX-527. Consistently, SA induced an increase in the levels of the chaperone BiP, resulting in a downregulation of unfolded protein response (UPR) signaling and UPR-dependent autophagy, avoiding their abnormal hyperactivation during senescence. SA did not directly activate SIRT1 in vitro, suggesting that SIRT1 is a downstream effector of SA signaling specifically in the response to cellular senescence. Our study not only uncovers a shikimic acid/SIRT1 signaling pathway that prevents cellular senescence, but also reinforces the role of sirtuins as key regulators of cell proteostasis.


Assuntos
NAD/efeitos dos fármacos , Ácido Chiquímico/farmacologia , Sirtuína 1/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/fisiologia , Humanos , NAD/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
20.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35012183

RESUMO

Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA