Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nitric Oxide ; 138-139: 17-25, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277062

RESUMO

BACKGROUND: Several nitric oxide (NO) generating devices have been developed to deliver NO between 1 part per million (ppm) and 80 ppm. Although inhalation of high-dose NO may exert antimicrobial effects, the feasibility and safety of producing high-dose (more than 100 ppm) NO remains to be established. In the current study, we designed, developed, and tested three high-dose NO generating devices. METHODS: We constructed three NO generating devices: a double spark plug NO generator, a high-pressure single spark plug NO generator, and a gliding arc NO generator. The NO and NO2 concentrations were measured at different gas flows and under various atmospheric pressures. The double spark plug NO generator was designed to deliver gas through an oxygenator and mixing with pure oxygen. The high-pressure and gliding arc NO generators were used to deliver gas through a ventilator into artificial lungs to mimic delivering high-dose NO in the clinical settings. The energy consumption was measured and compared among the three NO generators. RESULTS: The double spark plug NO generator produced 200 ± 2 ppm (mean ± SD) of NO at gas flow of 8 L/min (or 320 ± 3 ppm at gas flow of 5 L/min) with electrode gap of 3 mm. The nitrogen dioxide (NO2) levels were below 3.0 ± 0.1 ppm when mixing with various volumes of pure oxygen. The addition of a second generator increased the delivered NO from 80 (with one spark plug) to 200 ppm. With the high-pressure chamber, the NO concentration reached 407 ± 3 ppm with continuous air flow at 5 L/min when employing the 3 mm electrode gap under 2.0 atmospheric pressure (ATA). When compared to 1 ATA, NO production was increased 22% at 1.5 ATA and 34% at 2 ATA. The NO level was 180 ± 1 ppm when connecting the device to a ventilator with a constant inspiratory airflow of 15 L/min, and NO2 levels were below 1 (0.93 ± 0.02) ppm. The gliding arc NO generator produced up to 180 ± 4 ppm of NO when connecting the device to a ventilator, and the NO2 level was below 1 (0.91 ± 0.02) ppm in all testing conditions. The gliding arc device required more power (in watts) to generate the same concentrations of NO when compared to double spark plug or high-pressure NO generators. CONCLUSIONS: Our results demonstrated that it is feasible to enhance NO production (more than 100 ppm) while maintaining NO2 level relatively low (less than 3 ppm) with the three recently developed NO generating devices. Future studies might include these novel designs to deliver high doses of inhaled NO as an antimicrobial used to treat upper and lower respiratory tract infections.


Assuntos
Óxido Nítrico , Dióxido de Nitrogênio , Terapia Respiratória , Pulmão , Administração por Inalação , Oxigênio
2.
Arch Toxicol ; 96(12): 3363-3371, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195745

RESUMO

Electronic cigarettes (e-cigarettes) have been used widely as an alternative to conventional cigarettes and have become particularly popular among young adults. A growing body of evidence has shown that e-cigarettes are associated with acute lung injury and adverse effects in multiple other organs. Previous studies showed that high emissions of aldehydes (formaldehyde and acetaldehyde) in aerosols were associated with increased usage of the same e-cigarette coils. However, the impact on lung function of using aged coils has not been reported. We investigated the relationship between coil age and acute lung injury in mice exposed to experimental vaping for 1 h (2 puffs/min, 100 ml/puff). The e-liquid contains propylene glycol and vegetable glycerin (50:50, vol) only. The concentrations of formaldehyde and acetaldehyde in the vaping aerosols increased with age of the nichrome coils starting at 1200 puffs. Mice exposed to e-cigarette aerosols produced from 1800, but not 0 or 900, puff-aged coils caused acute lung injury, increased lung wet/dry weight ratio, and induced lung inflammation (IL-6, TNF-α, IL-1ß, MIP-2). Exposure to vaping aerosols from 1800 puff-aged coils decreased heart rate, respiratory rate, and oxygen saturation in mice compared to mice exposed to air or aerosols from new coils. In conclusion, we observed that the concentration of aldehydes (formaldehyde and acetaldehyde) increased with repeated and prolonged usage of e-cigarette coils. Exposure to high levels of aldehyde in vaping aerosol was associated with acute lung injury in mice. These findings show significant risk of lung injury associated with prolonged use of e-cigarette devices.


Assuntos
Lesão Pulmonar Aguda , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Camundongos , Acetaldeído , Lesão Pulmonar Aguda/induzido quimicamente , Aldeídos/toxicidade , Formaldeído/toxicidade , Glicerol , Interleucina-6 , Propilenoglicol/toxicidade , Aerossóis e Gotículas Respiratórios , Fator de Necrose Tumoral alfa
3.
ACS Omega ; 7(16): 14009-14016, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559170

RESUMO

Sickle cell disease (SCD) is an inherited disorder of hemoglobin (Hb); approximately 300,000 babies are born worldwide with SCD each year. In SCD, fibers of polymerized sickle Hb (HbS) form in red blood cells (RBCs), which cause RBCs to develop their characteristic "sickled" shape, resulting in hemolytic anemia and numerous vascular complications including vaso-occlusive crises. The development of novel antisickling compounds will provide new therapeutic options for patients with SCD. We developed a high-throughput "sickling assay" that is based on an automated high-content imaging system to quantify the effects of hypoxia on the shape and size of RBCs from HbSS SCD patients (SS RBCs). We used this assay to screen thousands of compounds for their ability to inhibit sickling. In the assay, voxelotor (an FDA-approved medication used to treat SCD) prevented sickling with a z'-factor > 0.4, suggesting that the assay is capable of identifying compounds that inhibit sickling. We screened the Broad Repurposing Library of 5393 compounds for their ability to prevent sickling in 4% oxygen/96% nitrogen. We identified two compounds, SNS-314 mesylate and voxelotor itself, that successfully prevented sickling. SNS-314 mesylate prevented sickling in the absence of oxygen, while voxelotor did not, suggesting that SNS-314 mesylate acts by a mechanism that is different from that of voxelotor. The sickling assay described in this study will permit the identification of additional, novel antisickling compounds, which will potentially expand the therapeutic options for SCD.

4.
J Vis Exp ; (180)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35253799

RESUMO

Nitric oxide (NO) activity in vivo is the combined results of its direct effects, the action of its derivatives generated from NO autoxidation, and the effects of nitrosated compounds. Measuring NO metabolites is essential to studying NO activity both at vascular levels and in other tissues, especially in the experimental settings where exogenous NO is administered. Ozone-based chemiluminescence assays allow precise measurements of NO and NO metabolites in both fluids (including plasma, tissue homogenates, cell cultures) and gas mixtures (e.g., exhaled breath). NO reacts with ozone to generate nitrogen dioxide in an excited state. The consequent light emission allows photodetection and the generation of an electric signal reflecting the NO content of the sample. Aliquots from the same sample can be used to measure specific NO metabolites, such as nitrate, nitrite, S-nitrosothiols, and iron-nitrosyl complexes. In addition, NO consumed by cell-free hemoglobin is also quantified with chemiluminescence analysis. An illustration of all these techniques is provided.


Assuntos
Luminescência , Óxido Nítrico , Medições Luminescentes/métodos , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo
5.
Respir Care ; 67(2): 201-208, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34413210

RESUMO

BACKGROUND: High-dose (≥ 80 ppm) inhaled nitric oxide (INO) has antimicrobial effects. We designed a trial to test the preventive effects of high-dose NO on coronavirus disease 2019 (COVID-19) in health care providers working with patients with COVID-19. The study was interrupted prematurely due to the introduction of COVID-19 vaccines for health care professionals. We thereby present data on safety and feasibility of breathing 160 ppm NO using 2 different NO sources, namely pressurized nitrogen/NO cylinders (INO) and electric NO (eNO) generators. METHODS: NO gas was inhaled at 160 ppm in air for 15 min twice daily, before and after each work shift, over 14 d by health care providers (NCT04312243). During NO administration, vital signs were continuously monitored. Safety was assessed by measuring transcutaneous methemoglobinemia (SpMet) and the inhaled nitrogen dioxide (NO2) concentration. RESULTS: Twelve healthy health care professionals received a collective total of 185 administrations of high-dose NO (160 ppm) for 15 min twice daily. One-hundred and seventy-one doses were delivered by INO and 14 doses by eNO. During NO administration, SpMet increased similarly in both groups (P = .82). Methemoglobin decreased in all subjects at 5 min after discontinuing NO administration. Inhaled NO2 concentrations remained between 0.70 ppm (0.63-0.79) and 0.75 ppm (0.67-0.83) in the INO group and between 0.74 ppm (0.68-0.78) and 0.88 ppm (0.70-0.93) in the eNO group. During NO administration, peripheral oxygen saturation and heart rate did not change. No adverse events occurred. CONCLUSIONS: This pilot study testing high-dose INO (160 ppm) for 15 min twice daily using eNO seems feasible and similarly safe when compared with INO.


Assuntos
COVID-19 , Óxido Nítrico , Administração por Inalação , Vacinas contra COVID-19 , Humanos , Saturação de Oxigênio , Projetos Piloto , SARS-CoV-2
6.
Nitric Oxide ; 104-105: 29-35, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835810

RESUMO

BACKGROUND: There is an increasing interest in safely delivering high dose of inhaled nitric oxide (NO) as an antimicrobial and antiviral therapeutics for spontaneously breathing patients. A novel NO delivery system is described. METHODS: We developed a gas delivery system that utilizes standard respiratory circuit connectors, a reservoir bag, and a scavenging chamber containing calcium hydroxide. The performance of the system was tested using a mechanical lung, assessing the NO concentration delivered at varying inspiratory flows. Safety was assessed in vitro and in vivo by measuring nitrogen dioxide (NO2) levels in the delivered NO gas. Lastly, we measured the inspired and expired NO and NO2 of this system in 5 healthy subjects during a 15-min administration of high dose NO (160 parts-per-million, ppm) using our delivery system. RESULTS: The system demonstrated stable delivery of prescribed NO levels at various inspiratory flow rates (0-50 L/min). The reservoir bag and a high flow of entering air minimized the oscillation of NO concentrations during inspiration on average 4.6 ppm for each 10 L/min increment in lung inspiratory flow. The calcium hydroxide scavenger reduced the inhaled NO2 concentration on average 0.9 ppm (95% CI -1.58, -0.22; p = .01). We performed 49 NO administrations of 160 ppm in 5 subjects. The average concentration of inspired NO was 164.8±10.74 ppm, with inspired NO2 levels of 0.7±0.13 ppm. The subjects did not experience any adverse events; transcutaneous methemoglobin concentrations increased from 1.05±0.58 to 2.26±0.47%. CONCLUSIONS: The system we developed to administer high-dose NO for inhalation is easy to build, reliable, was well tolerated in healthy subjects.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Óxido Nítrico/administração & dosagem , Administração por Inalação , Adulto , Feminino , Humanos , Masculino , Respiração
7.
Nitric Oxide ; 97: 11-15, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982629

RESUMO

OBJECTIVES: To test the feasibility, safety, and efficacy of intratracheal delivery of nitric oxide (NO) generated from air by pulsed electrical discharge via a Scoop catheter. STUDY DESIGN: We studied healthy 3- to 4-month-old lambs weighing 34 ± 4 kg (mean ± SD, n = 6). A transtracheal Scoop catheter was inserted through a cuffed tracheostomy tube. U46619 was infused to increase mean pulmonary arterial pressure (mPAP) from 16 ± 1 to 32 ± 3 mmHg (mean ± SD). Electrically generated NO was delivered via the Scoop catheter to awake lambs. A sampling line, to monitor NO and nitrogen dioxide (NO2) levels, was placed in the distal trachea of the lambs. The effect of varying doses of electrically generated NO, produced continuously, on pulmonary hypertension was assessed. RESULTS: In awake lambs with acute pulmonary hypertension, NO was continuously delivered via the Scoop catheter at 400 ml/min. NO induced pulmonary vasodilation. NO2 levels, measured in the trachea, were below 0.5 ppm at intratracheal NO doses of 10-80 ppm. No changes were detected in the levels of methemoglobin in blood samples before and after 5 min of NO breathing. CONCLUSIONS: Continuously delivering electrically generated NO through a Scoop catheter produces vasodilation of the pulmonary vasculature of awake lambs with pulmonary hypertension. Transtracheal NO delivery may provide a long-term treatment for patients with chronic pulmonary hypertension as an outpatient without requiring a mask or tracheal intubation.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico/farmacologia , Vigília/efeitos dos fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/administração & dosagem , Administração por Inalação , Ar , Animais , Eletricidade , Hipertensão Pulmonar/induzido quimicamente , Infusões Intravenosas , Óxido Nítrico/administração & dosagem , Óxido Nítrico/análise , Ovinos , Traqueia/química , Vasodilatação/efeitos dos fármacos
10.
Transfusion ; 59(1): 359-370, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30444016

RESUMO

BACKGROUND: Hemoglobin-based oxygen carriers (HBOCs) are potential alternatives to red blood cells in transfusions. Clinical trials using early versions of HBOCs noted adverse effects that appeared to result from removal of the vasodilator nitric oxide (NO). Previous reports suggest that size-enlarged HBOCs may avoid NO-rich regions along the vasculature and therefore not cause vasoconstriction and hypertension. STUDY DESIGN AND METHODS: Hemoglobin (Hb) bis-tetramers (bis-tetramers of hemoglobin that are prepared using CuAAC chemistry [BT-Hb] and bis-tetramers of hemoglobin that are specifically acetylated and prepared using CuAAC chemistry [BT-acHb]) can be reliably produced by a bio-orthogonal cyclo-addition approach. We considered that an HBOC derived from chemical coupling of two Hbs would be sufficiently large to avoid NO scavenging and related side effects. The ability of intravenously infused BT-Hb and BT-acHb to remain in the circulation without causing hypertension were determined in wild-type (WT) and diabetic (db/db) mouse models. RESULTS: In WT mice, the coupled oxygen-carrying proteins retained their function over several hours after administration. No significant changes in systolic blood pressure from baseline were observed after intravenous infusion of BT-Hb or BT-acHb in awake WT and db/db mice. In contrast, infusion of native Hb or cross-linked Hb tetramers in both animal models induced systemic hypertension. CONCLUSION: The results of this study indicate that bis-tetrameric HBOCs derived from the bio-orthogonal cyclo-addition process are likely to overcome clinical issues that arise from NO scavenging by Hb derivatives.


Assuntos
Hemoglobinas/metabolismo , Vasoconstrição , Animais , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Hipertensão/metabolismo , Masculino , Metemoglobina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
11.
Br J Pharmacol ; 176(2): 246-255, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288739

RESUMO

Nitric oxide (NO) is a gas that induces relaxation of smooth muscle cells in the vasculature. Because NO reacts with oxyhaemoglobin with high affinity, the gas is rapidly scavenged by oxyhaemoglobin in red blood cells and the vasodilating effects of inhaled NO are limited to ventilated regions in the lung. NO therefore has the unique ability to induce pulmonary vasodilatation specifically in the portions of the lung with adequate ventilation, thereby improving oxygenation of blood and decreasing intrapulmonary right to left shunting. Inhaled NO is used to treat a spectrum of cardiopulmonary conditions, including pulmonary hypertension in children and adults. However, the widespread use of inhaled NO is limited by logistical and financial barriers. We have designed, developed and tested a simple and economic NO generation device, which uses pulsed electrical discharges in air to produce therapeutic levels of NO that can be used for inhalation therapy. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Óxido Nítrico/farmacologia , Administração por Inalação , Animais , Humanos , Óxido Nítrico/administração & dosagem
12.
Am J Respir Crit Care Med ; 198(10): 1279-1287, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29932345

RESUMO

RATIONALE: No medical intervention has been identified that decreases acute kidney injury and improves renal outcome at 1 year after cardiac surgery. OBJECTIVES: To determine whether administration of nitric oxide reduces the incidence of postoperative acute kidney injury and improves long-term kidney outcomes after multiple cardiac valve replacement requiring prolonged cardiopulmonary bypass. METHODS: Two hundred and forty-four patients undergoing elective, multiple valve replacement surgery, mostly due to rheumatic fever, were randomized to receive either nitric oxide (treatment) or nitrogen (control). Nitric oxide and nitrogen were administered via the gas exchanger during cardiopulmonary bypass and by inhalation for 24 hours postoperatively. MEASUREMENTS AND MAIN RESULTS: The primary outcome was as follows: oxidation of ferrous plasma oxyhemoglobin to ferric methemoglobin was associated with reduced postoperative acute kidney injury from 64% (control group) to 50% (nitric oxide group) (relative risk [RR], 0.78; 95% confidence interval [CI], 0.62-0.97; P = 0.014). Secondary outcomes were as follows: at 90 days, transition to stage 3 chronic kidney disease was reduced from 33% in the control group to 21% in the treatment group (RR, 0.64; 95% CI, 0.41-0.99; P = 0.024) and at 1 year, from 31% to 18% (RR, 0.59; 95% CI, 0.36-0.96; P = 0.017). Nitric oxide treatment reduced the overall major adverse kidney events at 30 days (RR, 0.40; 95% CI, 0.18-0.92; P = 0.016), 90 days (RR, 0.40; 95% CI, 0.17-0.92; P = 0.015), and 1 year (RR, 0.47; 95% CI, 0.20-1.10; P = 0.041). CONCLUSIONS: In patients undergoing multiple valve replacement and prolonged cardiopulmonary bypass, administration of nitric oxide decreased the incidence of acute kidney injury, transition to stage 3 chronic kidney disease, and major adverse kidney events at 30 days, 90 days, and 1 year. Clinical trial registered with ClinicalTrials.gov (NCT01802619).


Assuntos
Injúria Renal Aguda/prevenção & controle , Ponte Cardiopulmonar/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Óxido Nítrico/farmacologia , Complicações Pós-Operatórias/prevenção & controle , Insuficiência Renal Crônica/prevenção & controle , Feminino , Sequestradores de Radicais Livres/farmacologia , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
13.
Endocrinology ; 159(5): 2165-2172, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635291

RESUMO

Serum levels of fibroblast growth factor 23 (FGF23) markedly increase with renal impairment, with FGF23 levels correlating with the presence of left ventricular hypertrophy (LVH) and mortality in patients with chronic kidney disease (CKD). FGF23 activates calcineurin/nuclear factor of activated T cell (NFAT) signaling and induces hypertrophy in murine cardiomyocytes. X-linked hypophosphatemia (XLH) is characterized by high circulating levels of FGF23 but, in contrast to CKD, is associated with hypophosphatemia. The cardiac effects of high circulating levels of FGF23 in XLH are not well defined. Thus, studies were undertaken to define the cardiac phenotype in the mouse model of XLH (Hyp mice). Echocardiographic and histological analyses demonstrated that Hyp left ventricles (LVs) are smaller than those of wild-type mice. Messenger RNA expression of cardiac hypertrophy markers was not altered in the LV or right ventricle of Hyp mice. However, the Hyp LVs had increased expression of the NFAT target genes NFATc1 and RCAN1. To determine whether phosphate alone can induce markers of hypertrophy, differentiated C2C12 myocytes were treated with phosphate. Phosphate treatment increased expression of cardiac hypertrophy markers, supporting a primary role for phosphate in inducing LVH. Although previous studies showed that increased circulating FGF23 and phosphate levels are associated with LVH, our results demonstrated that in XLH, high circulating levels of FGF23 in the setting of hypophosphatemia do not induce cardiac hypertrophy.


Assuntos
Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Ventrículos do Coração/patologia , Hipertrofia Ventricular Esquerda/genética , Miocárdio/patologia , Animais , Proteínas de Ligação ao Cálcio , Cardiomegalia/genética , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Fator de Crescimento de Fibroblastos 23 , Expressão Gênica , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Proteínas Musculares/genética , Miocárdio/metabolismo , Fatores de Transcrição NFATC/genética , Tamanho do Órgão , RNA Mensageiro/metabolismo
14.
Mol Pharm ; 15(5): 1954-1963, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29634905

RESUMO

Sickle cell disease is an inherited disorder of hemoglobin (Hb). During a sickle cell crisis, deoxygenated sickle hemoglobin (deoxyHbS) polymerizes to form fibers in red blood cells (RBCs), causing the cells to adopt "sickled" shapes. Using small molecules to increase the affinity of Hb for oxygen is a potential approach to treating sickle cell disease, because oxygenated Hb interferes with the polymerization of deoxyHbS. We have identified a triazole disulfide compound (4,4'-di(1,2,3-triazolyl)disulfide, designated TD-3), which increases the affinity of Hb for oxygen. The crystal structures of carboxy- and deoxy-forms of human adult Hb (HbA), each complexed with TD-3, revealed that one molecule of the monomeric thiol form of TD-3 (5-mercapto-1H-1,2,3-triazole, designated MT-3) forms a disulfide bond with ß-Cys93, which inhibits the salt-bridge formation between ß-Asp94 and ß-His146. This inhibition of salt bridge formation stabilizes the R-state and destabilizes the T-state of Hb, resulting in reduced magnitude of the Bohr effect and increased affinity of Hb for oxygen. Intravenous administration of TD-3 (100 mg/kg) to C57BL/6 mice increased the affinity of murine Hb for oxygen, and the mice did not appear to be adversely affected by the drug. TD-3 reduced in vitro hypoxia-induced sickling of human sickle RBCs. The percentage of sickled RBCs and the P50 of human SS RBCs by TD-3 were inversely correlated with the fraction of Hb modified by TD-3. Our study shows that TD-3, and possibly other triazole disulfide compounds that bind to Hb ß-Cys93, may provide new treatment options for patients with sickle cell disease.


Assuntos
Anemia Falciforme/tratamento farmacológico , Antidrepanocíticos/farmacologia , Dissulfetos/farmacologia , Eritrócitos/efeitos dos fármacos , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Triazóis/farmacologia , Anemia Falciforme/metabolismo , Animais , Eritrócitos/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Metalotioneína 3 , Camundongos , Camundongos Endogâmicos C57BL , Polimerização/efeitos dos fármacos , Ligação Proteica
15.
Nitric Oxide ; 75: 70-76, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486304

RESUMO

OBJECTIVES: To test the safety of a novel miniaturized device that produces nitric oxide (NO) from air by pulsed electrical discharge, and to demonstrate that the generated NO can be used to vasodilate the pulmonary vasculature in rabbits with chemically-induced pulmonary hypertension. STUDY DESIGN: A miniature NO (mini-NO) generator was tested for its ability to produce therapeutic levels (20-80 parts per million (ppm)) of NO, while removing potentially toxic gases and metal particles. We studied healthy 6-month-old New Zealand rabbits weighing 3.4 ±â€¯0.4 kg (mean ±â€¯SD, n = 8). Pulmonary hypertension was induced by chemically increasing right ventricular systolic pressure to 28-30 mmHg. The mini-NO generator was placed near the endotracheal tube. Production of NO was triggered by a pediatric airway flowmeter during the first 0.5 s of inspiration. RESULTS: In rabbits with acute pulmonary hypertension, the mini-NO generator produced sufficient NO to induce pulmonary vasodilation. Potentially toxic nitrogen dioxide (NO2) and ozone (O3) were removed by the Ca(OH)2 scavenger. Metallic particles, released from the electrodes by the electric plasma, were removed by a 0.22 µm filter. While producing 40 ppm NO, the mini-NO generator was cooled by a flow of air (70 ml/min) and the external temperature of the housing did not exceed 31 °C. CONCLUSIONS: The mini-NO generator safely produced therapeutic levels of NO from air. The mini-NO generator is an effective and economical approach to producing NO for treating neonatal pulmonary hypertension and will increase the accessibility and therapeutic uses of life-saving NO therapy worldwide.


Assuntos
Hidróxido de Cálcio/administração & dosagem , Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico/administração & dosagem , Terapia Respiratória/instrumentação , Administração por Inalação , Animais , Desenho de Equipamento , Feminino , Masculino , Metais/isolamento & purificação , Óxido Nítrico/uso terapêutico , Coelhos , Temperatura , Pressão Ventricular/efeitos dos fármacos
16.
J Aerosol Med Pulm Drug Deliv ; 31(2): 78-87, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29451844

RESUMO

The 21st Congress for the International Society for Aerosols in Medicine included, for the first time, a session on Pulmonary Delivery of Therapeutic and Diagnostic Gases. The rationale for such a session within ISAM is that the pulmonary delivery of gaseous drugs in many cases targets the same therapeutic areas as aerosol drug delivery, and is in many scientific and technical aspects similar to aerosol drug delivery. This article serves as a report on the recent ISAM congress session providing a synopsis of each of the presentations. The topics covered are the conception, testing, and development of the use of nitric oxide to treat pulmonary hypertension; the use of realistic adult nasal replicas to evaluate the performance of pulsed oxygen delivery devices; an overview of several diagnostic gas modalities; and the use of inhaled oxygen as a proton magnetic resonance imaging (MRI) contrast agent for imaging temporal changes in the distribution of specific ventilation during recovery from bronchoconstriction. Themes common to these diverse applications of inhaled gases in medicine are discussed, along with future perspectives on development of therapeutic and diagnostic gases.


Assuntos
Sistemas de Liberação de Medicamentos , Gases/administração & dosagem , Pulmão/metabolismo , Nebulizadores e Vaporizadores , Administração por Inalação , Adulto , Aerossóis , Meios de Contraste/administração & dosagem , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Óxido Nítrico/administração & dosagem , Oxigênio/administração & dosagem
17.
Invest Ophthalmol Vis Sci ; 58(11): 4826-4835, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973329

RESUMO

Purpose: While nitric oxide (NO) donors are emerging as treatments for glaucoma, the mechanism by which NO lowers intraocular pressure (IOP) is unclear. NO activates the enzyme guanylyl cyclase (GC) to produce cyclic guanosine monophosphate. We studied the ocular effects of inhaled and topically applied NO gas in mice and lambs, respectively. Methods: IOP and aqueous humor (AqH) outflow were measured in WT and GC-1α subunit null (GC-1-/-) mice. Mice breathed 40 parts per million (ppm) NO in O2 or control gas (N2/O2). We also studied the effect of ocular NO gas exposure (80, 250, 500, and 1000 ppm) on IOP in anesthetized lambs. NO metabolites were measured in AqH and plasma. Results: In awake WT mice, breathing NO for 40 minutes lowered IOP from 14.4 ± 1.9 mm Hg to 10.9 ± 1.0 mm Hg (n = 11, P < 0.001). Comparable results were obtained in anesthetized WT mice (n = 10, P < 0.001). In awake or anesthetized GC-1-/- mice, IOP did not change under similar experimental conditions (P ≥ 0.08, n = 20). Breathing NO increased in vivo outflow facility in WT but not GC-1-/- mice (+13.7 ± 14.6% vs. -12.1 ± 9.4%, n = 4 each, P < 0.05). In lambs, ocular exposure to NO lowered IOP in a dose-dependent manner (-0.43 mm Hg/ppm NO; n = 5 with 40 total measurements; P = 0.04) without producing corneal pathology or altering pulmonary and systemic hemodynamics. After ocular NO exposure, NO metabolites were increased in AqH (n = 8, P < 0.001) but not in plasma. Conclusions: Breathing NO reduced IOP and increased outflow facility in a GC-dependent manner in mice. Exposure of ovine eyes to NO lowers IOP.


Assuntos
Humor Aquoso/fisiologia , Guanilato Ciclase/fisiologia , Pressão Intraocular/efeitos dos fármacos , Óxido Nítrico/farmacologia , Administração por Inalação , Administração Tópica , Animais , Modelos Animais de Doenças , Feminino , Guanilato Ciclase/deficiência , Masculino , Camundongos , Camundongos Transgênicos , Óxido Nítrico/administração & dosagem , Ovinos
18.
Am J Physiol Heart Circ Physiol ; 312(6): H1120-H1127, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28314763

RESUMO

Intravascular hemolysis produces injury in a variety of human diseases including hemoglobinopathies, malaria, and sepsis. The adverse effects of increased plasma hemoglobin are partly mediated by depletion of nitric oxide (NO) and result in vasoconstriction. Circulating plasma proteins haptoglobin and hemopexin scavenge extracellular hemoglobin and cell-free heme, respectively. The ability of human haptoglobin or hemopexin to inhibit the adverse effects of NO scavenging by circulating murine hemoglobin was tested in C57Bl/6 mice. In healthy awake mice, the systemic hemodynamic effects of intravenous coinfusion of cell-free hemoglobin and exogenous haptoglobin or of cell-free hemoglobin and hemopexin were compared with the hemodynamic effects of infusion of cell-free hemoglobin or control protein (albumin) alone. We also studied the hemodynamic effects of infusing hemoglobin and haptoglobin as well as injecting either hemoglobin or albumin alone in mice fed a high-fat diet (HFD) and in diabetic (db/db) mice. Coinfusion of a 1:1 weight ratio of haptoglobin but not hemopexin with cell-free hemoglobin prevented hemoglobin-induced systemic hypertension in healthy awake mice. In mice fed a HFD and in diabetic mice, coinfusion of haptoglobin mixed with an equal mass of cell-free hemoglobin did not reverse hemoglobin-induced hypertension. Haptoglobin retained cell-free hemoglobin in plasma, but neither haptoglobin nor hemopexin affected the ability of hemoglobin to scavenge NO ex vivo. In conclusion, in healthy C57Bl/6 mice with normal endothelium, coadministration of haptoglobin but not hemopexin with cell-free hemoglobin prevents acute hemoglobin-induced systemic hypertension by compartmentalizing cell-free hemoglobin in plasma. In murine diseases associated with endothelial dysfunction, haptoglobin therapy appears to be insufficient to prevent hemoglobin-induced vasoconstriction.NEW & NOTEWORTHY Coadministraton of haptoglobin but not hemopexin with cell-free hemoglobin prevents hemoglobin-induced systemic hypertension in mice with a normal endothelium. In contrast, treatment with the same amount of haptoglobin is unable to prevent hemoglobin-induced vasoconstriction in mice with hyperlipidemia or diabetes mellitus, disorders that are associated with endothelial dysfunction.


Assuntos
Anti-Hipertensivos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Haptoglobinas/farmacologia , Hemoglobinas , Hemopexina/farmacologia , Hipertensão/prevenção & controle , Vasoconstrição/efeitos dos fármacos , Animais , Anti-Hipertensivos/administração & dosagem , Diabetes Mellitus/fisiopatologia , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Haptoglobinas/administração & dosagem , Hemopexina/administração & dosagem , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Infusões Intravenosas , Rim/metabolismo , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Fatores de Tempo
20.
Nitric Oxide ; 60: 16-23, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27592386

RESUMO

Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 µg/day) and the platinum-nickel ground electrode (-55 µg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Contaminação de Medicamentos/prevenção & controle , Óxido Nítrico/administração & dosagem , Administração por Inalação , Filtros de Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Animais , Eletrodos , Filtração , Irídio/química , Pulmão/química , Pulmão/efeitos dos fármacos , Masculino , Metais Pesados/análise , Metais Pesados/química , Metais Pesados/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/efeitos adversos , Óxido Nítrico/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA